|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torchvision |
|
|
|
__all__ = [ |
|
"filter_box", |
|
"postprocess", |
|
"bboxes_iou", |
|
"matrix_iou", |
|
"adjust_box_anns", |
|
"xyxy2xywh", |
|
"xyxy2cxcywh", |
|
] |
|
|
|
|
|
def filter_box(output, scale_range): |
|
""" |
|
output: (N, 5+class) shape |
|
""" |
|
min_scale, max_scale = scale_range |
|
w = output[:, 2] - output[:, 0] |
|
h = output[:, 3] - output[:, 1] |
|
keep = (w * h > min_scale * min_scale) & (w * h < max_scale * max_scale) |
|
return output[keep] |
|
|
|
|
|
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45, class_agnostic=False): |
|
box_corner = prediction.new(prediction.shape) |
|
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 |
|
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 |
|
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 |
|
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 |
|
prediction[:, :, :4] = box_corner[:, :, :4] |
|
|
|
output = [None for _ in range(len(prediction))] |
|
for i, image_pred in enumerate(prediction): |
|
|
|
|
|
if not image_pred.size(0): |
|
continue |
|
|
|
class_conf, class_pred = torch.max(image_pred[:, 5: 5 + num_classes], 1, keepdim=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= conf_thre).squeeze() |
|
|
|
detections = torch.cat((image_pred[:, :5], class_conf, class_pred.float()), 1) |
|
detections = detections[conf_mask] |
|
if not detections.size(0): |
|
continue |
|
|
|
if class_agnostic: |
|
nms_out_index = torchvision.ops.nms( |
|
detections[:, :4], |
|
detections[:, 4] * detections[:, 5], |
|
nms_thre, |
|
) |
|
else: |
|
nms_out_index = torchvision.ops.batched_nms( |
|
detections[:, :4], |
|
detections[:, 4] * detections[:, 5], |
|
detections[:, 6], |
|
nms_thre, |
|
) |
|
|
|
detections = detections[nms_out_index] |
|
if output[i] is None: |
|
output[i] = detections |
|
else: |
|
output[i] = torch.cat((output[i], detections)) |
|
|
|
return output |
|
|
|
|
|
def bboxes_iou(bboxes_a, bboxes_b, xyxy=True): |
|
if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4: |
|
raise IndexError |
|
|
|
if xyxy: |
|
tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2]) |
|
br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:]) |
|
area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1) |
|
area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1) |
|
else: |
|
tl = torch.max( |
|
(bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2), |
|
(bboxes_b[:, :2] - bboxes_b[:, 2:] / 2), |
|
) |
|
br = torch.min( |
|
(bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2), |
|
(bboxes_b[:, :2] + bboxes_b[:, 2:] / 2), |
|
) |
|
|
|
area_a = torch.prod(bboxes_a[:, 2:], 1) |
|
area_b = torch.prod(bboxes_b[:, 2:], 1) |
|
en = (tl < br).type(tl.type()).prod(dim=2) |
|
area_i = torch.prod(br - tl, 2) * en |
|
return area_i / (area_a[:, None] + area_b - area_i) |
|
|
|
|
|
def matrix_iou(a, b): |
|
""" |
|
return iou of a and b, numpy version for data augenmentation |
|
""" |
|
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) |
|
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) |
|
|
|
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) |
|
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) |
|
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) |
|
return area_i / (area_a[:, np.newaxis] + area_b - area_i + 1e-12) |
|
|
|
|
|
def adjust_box_anns(bbox, scale_ratio, padw, padh, w_max, h_max): |
|
bbox[:, 0::2] = np.clip(bbox[:, 0::2] * scale_ratio + padw, 0, w_max) |
|
bbox[:, 1::2] = np.clip(bbox[:, 1::2] * scale_ratio + padh, 0, h_max) |
|
return bbox |
|
|
|
|
|
def xyxy2xywh(bboxes): |
|
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] |
|
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] |
|
return bboxes |
|
|
|
|
|
def xyxy2cxcywh(bboxes): |
|
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] |
|
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] |
|
bboxes[:, 0] = bboxes[:, 0] + bboxes[:, 2] * 0.5 |
|
bboxes[:, 1] = bboxes[:, 1] + bboxes[:, 3] * 0.5 |
|
return bboxes |
|
|