File size: 4,671 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii Inc. All rights reserved.

import numpy as np

import torch
import torchvision

__all__ = [
    "filter_box",
    "postprocess",
    "bboxes_iou",
    "matrix_iou",
    "adjust_box_anns",
    "xyxy2xywh",
    "xyxy2cxcywh",
]


def filter_box(output, scale_range):
    """
    output: (N, 5+class) shape
    """
    min_scale, max_scale = scale_range
    w = output[:, 2] - output[:, 0]
    h = output[:, 3] - output[:, 1]
    keep = (w * h > min_scale * min_scale) & (w * h < max_scale * max_scale)
    return output[keep]


def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45, class_agnostic=False):
    box_corner = prediction.new(prediction.shape)
    box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
    box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
    box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
    box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
    prediction[:, :, :4] = box_corner[:, :, :4]

    output = [None for _ in range(len(prediction))]
    for i, image_pred in enumerate(prediction):

        # If none are remaining => process next image
        if not image_pred.size(0):
            continue
        # Get score and class with highest confidence
        class_conf, class_pred = torch.max(image_pred[:, 5: 5 + num_classes], 1, keepdim=True)
        
        # implemented by queyu, 2022/08/08
        # print(class_pred)
        # class_pred -= y_offset
        # class_pred[class_pred < 0] = 0
        # print(class_pred)
        # exit(0)

        conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= conf_thre).squeeze()
        # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
        detections = torch.cat((image_pred[:, :5], class_conf, class_pred.float()), 1)
        detections = detections[conf_mask]
        if not detections.size(0):
            continue

        if class_agnostic:
            nms_out_index = torchvision.ops.nms(
                detections[:, :4],
                detections[:, 4] * detections[:, 5],
                nms_thre,
            )
        else:
            nms_out_index = torchvision.ops.batched_nms(
                detections[:, :4],
                detections[:, 4] * detections[:, 5],
                detections[:, 6],
                nms_thre,
            )

        detections = detections[nms_out_index]
        if output[i] is None:
            output[i] = detections
        else:
            output[i] = torch.cat((output[i], detections))

    return output


def bboxes_iou(bboxes_a, bboxes_b, xyxy=True):
    if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4:
        raise IndexError

    if xyxy:
        tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2])
        br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
        area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1)
        area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1)
    else:
        tl = torch.max(
            (bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
            (bboxes_b[:, :2] - bboxes_b[:, 2:] / 2),
        )
        br = torch.min(
            (bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
            (bboxes_b[:, :2] + bboxes_b[:, 2:] / 2),
        )

        area_a = torch.prod(bboxes_a[:, 2:], 1)
        area_b = torch.prod(bboxes_b[:, 2:], 1)
    en = (tl < br).type(tl.type()).prod(dim=2)
    area_i = torch.prod(br - tl, 2) * en  # * ((tl < br).all())
    return area_i / (area_a[:, None] + area_b - area_i)


def matrix_iou(a, b):
    """
    return iou of a and b, numpy version for data augenmentation
    """
    lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
    rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

    area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
    area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
    area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
    return area_i / (area_a[:, np.newaxis] + area_b - area_i + 1e-12)


def adjust_box_anns(bbox, scale_ratio, padw, padh, w_max, h_max):
    bbox[:, 0::2] = np.clip(bbox[:, 0::2] * scale_ratio + padw, 0, w_max)
    bbox[:, 1::2] = np.clip(bbox[:, 1::2] * scale_ratio + padh, 0, h_max)
    return bbox


def xyxy2xywh(bboxes):
    bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
    bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
    return bboxes


def xyxy2cxcywh(bboxes):
    bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
    bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
    bboxes[:, 0] = bboxes[:, 0] + bboxes[:, 2] * 0.5
    bboxes[:, 1] = bboxes[:, 1] + bboxes[:, 3] * 0.5
    return bboxes