Krebzonide's picture
Update app.py
a794409
raw
history blame
2.45 kB
from diffusers import AutoPipelineForText2Image
import torch
import random
import os
import gradio as gr
hf_token = os.getenv("HF_TOKEN")
nsfw_filter = int(os.getenv("Safe"))
naughtyWords = ["nude", "nsfw", "naked", "porn", "boob", "tit", "nipple", "vagina", "pussy", "panties", "underwear", "upskirt", "bottomless", "topless", "petite", "xxx"]
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""
def generate(prompt, samp_steps, batch_size, seed, progress=gr.Progress(track_tqdm=True)):
prompt = prompt.lower()
if nsfw_filter:
if prompt[:10] == "krebzonide":
prompt = prompt[10:]
else:
neg_prompt = neg_prompt + ", child, nsfw, nipples, nude, underwear, naked"
for word in naughtyWords:
if prompt.find(word) >= 0:
return None, 80085
if seed < 0:
seed = random.randint(1,999999)
images = pipe(
prompt,
num_inference_steps=samp_steps,
num_images_per_prompt=batch_size,
guidance_scale=0.0,
generator=torch.manual_seed(seed),
).images
return gr.update(value = [(img, f"Image {i+1}") for i, img in enumerate(images)]), seed
def set_base_model():
pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype = torch.float16,
variant = "fp16",
#use_auth_token=hf_token
)
pipe.to("cuda")
return pipe
with gr.Blocks(css=css) as demo:
with gr.Column():
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Generate", elem_classes="btn-green")
with gr.Row():
samp_steps = gr.Slider(1, 5, value=1, step=1, label="Sampling steps")
batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size", interactive=True)
seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
gallery = gr.Gallery(show_label=False, preview=True, container=False, height=700)
submit_btn.click(generate, [prompt, samp_steps, batch_size, seed], [gallery, lastSeed], queue=True)
pipe = set_base_model()
demo.launch(debug=True)