from diffusers import AutoPipelineForText2Image import torch import random import os import gradio as gr hf_token = os.getenv("HF_TOKEN") nsfw_filter = int(os.getenv("Safe")) naughtyWords = ["nude", "nsfw", "naked", "porn", "boob", "tit", "nipple", "vagina", "pussy", "panties", "underwear", "upskirt", "bottomless", "topless", "petite", "xxx"] css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, samp_steps, batch_size, seed, progress=gr.Progress(track_tqdm=True)): prompt = prompt.lower() if nsfw_filter: if prompt[:10] == "krebzonide": prompt = prompt[10:] else: neg_prompt = neg_prompt + ", child, nsfw, nipples, nude, underwear, naked" for word in naughtyWords: if prompt.find(word) >= 0: return None, 80085 if seed < 0: seed = random.randint(1,999999) images = pipe( prompt, num_inference_steps=samp_steps, num_images_per_prompt=batch_size, guidance_scale=0.0, generator=torch.manual_seed(seed), ).images return gr.update(value = [(img, f"Image {i+1}") for i, img in enumerate(images)]), seed def set_base_model(): pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype = torch.float16, variant = "fp16", #use_auth_token=hf_token ) pipe.to("cuda") return pipe with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") submit_btn = gr.Button("Generate", elem_classes="btn-green") with gr.Row(): samp_steps = gr.Slider(1, 5, value=1, step=1, label="Sampling steps") batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size", interactive=True) seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) gallery = gr.Gallery(show_label=False, preview=True, container=False, height=700) submit_btn.click(generate, [prompt, samp_steps, batch_size, seed], [gallery, lastSeed], queue=True) pipe = set_base_model() demo.launch(debug=True)