File size: 2,554 Bytes
4358e59
9c70ba0
3fec1fb
4358e59
 
3976ed9
f4ff201
3fec1fb
 
70e3d12
3fec1fb
 
 
 
70e3d12
3fec1fb
 
 
81d0a4c
8553966
81d0a4c
7e9a760
 
983bcd6
 
8553966
983bcd6
 
 
9c70ba0
9f0ced2
81d0a4c
 
 
308c05e
4358e59
983bcd6
4358e59
809a5ae
f9aa80f
3fec1fb
4358e59
983bcd6
 
 
 
 
 
4358e59
 
 
686e886
 
4358e59
 
e5c577f
75f237b
3fec1fb
0a14984
3fec1fb
81d0a4c
70e3d12
a4ca4f9
548031b
8553966
983bcd6
75f237b
5f1159f
a4ca4f9
769a722
a4ca4f9
81d0a4c
b47c647
4358e59
81d0a4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline
from PIL import Image
import gradio as gr
import random
import torch
import math

css = """
.btn-green {
  background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
  border-color: #22c55e !important;
  color: #166534 !important;
}
.btn-green:hover {
  background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""

def generate(prompt, turbo_steps, samp_steps, seed, progress=gr.Progress(track_tqdm=True), negative_prompt = ""):
    print("prompt = ", prompt)
    print("negative prompt = ", negative_prompt)
    if seed < 0:
        seed = random.randint(1,999999)
    image = txt2img(
        prompt,
        num_inference_steps=turbo_steps,
        guidance_scale=0.0,
        generator=torch.manual_seed(seed),
    ).images[0]
    upscaled_image = image.resize((1024,1024), 1)
    final_image = img2img(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=upscaled_image,
        num_inference_steps=samp_steps,
        guidance_scale=5,
        strength=1,
        generator=torch.manual_seed(seed),
    ).images[0]
    return [final_image], seed
        
def set_base_models():
    txt2img = AutoPipelineForText2Image.from_pretrained(
        "stabilityai/sdxl-turbo",
        torch_dtype = torch.float16,
        variant = "fp16"
    )
    txt2img.to("cuda")
    img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
        "Lykon/dreamshaper-8",
        torch_dtype = torch.float16,
        variant = "fp16",
        safety_checker=None
    )
    img2img.to("cuda")
    return txt2img, img2img

with gr.Blocks(css=css) as demo:
    with gr.Column():
        prompt = gr.Textbox(label="Prompt")
        negative_prompt = gr.Textbox(label="Negative Prompt")
        submit_btn = gr.Button("Generate", elem_classes="btn-green")
        
        with gr.Row():
            turbo_steps = gr.Slider(1, 4, value=1, step=1, label="Turbo steps")
            sampling_steps = gr.Slider(1, 6, value=3, step=1, label="Refiner steps")
            seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
            lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
            
        gallery = gr.Gallery(show_label=False, preview=True, container=False, height=1100)
        
    submit_btn.click(generate, [prompt, turbo_steps, sampling_steps, seed, negative_prompt], [gallery, lastSeed], queue=True)
    
txt2img, img2img = set_base_models()
demo.launch(debug=True)