Krebzonide commited on
Commit
983bcd6
·
1 Parent(s): f1f2536

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -21
app.py CHANGED
@@ -1,7 +1,6 @@
1
  from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline
2
  from PIL import Image
3
  import gradio as gr
4
- import numpy as np
5
  import random
6
  import torch
7
  import math
@@ -17,36 +16,33 @@ css = """
17
  }
18
  """
19
 
20
- def generate(prompt, samp_steps, seed, strength, progress=gr.Progress(track_tqdm=True)):
21
  if seed < 0:
22
  seed = random.randint(1,999999)
23
- # image = txt2img(
24
- # prompt,
25
- # num_inference_steps=1,
26
- # guidance_scale=0.0,
27
- # generator=torch.manual_seed(seed),
28
- # ).images[0]
29
- data=np.random.randint(low=0,high=256,size=128*128*3, dtype=np.uint8)
30
- data=data.reshape(128,128,3)
31
- image = Image.fromarray(data,'RGB')
32
  upscaled_image = image.resize((1024,1024), 1)
33
  final_image = img2img(
34
  prompt,
35
  upscaled_image,
36
  num_inference_steps=math.ceil(samp_steps/strength),
37
  guidance_scale=5,
38
- strength=strength,
39
  generator=torch.manual_seed(seed),
40
  ).images[0]
41
  return [final_image], seed
42
 
43
  def set_base_models():
44
- # txt2img = AutoPipelineForText2Image.from_pretrained(
45
- # "stabilityai/sdxl-turbo",
46
- # torch_dtype = torch.float16,
47
- # variant = "fp16"
48
- # )
49
- # txt2img.to("cuda")
50
  img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
51
  "Lykon/dreamshaper-8",
52
  torch_dtype = torch.float16,
@@ -62,14 +58,13 @@ with gr.Blocks(css=css) as demo:
62
  submit_btn = gr.Button("Generate", elem_classes="btn-green")
63
 
64
  with gr.Row():
65
- sampling_steps = gr.Slider(1, 10, value=5, step=1, label="Sampling steps")
66
- strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Refiner strength")
67
  seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
68
  lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
69
 
70
  gallery = gr.Gallery(show_label=False, preview=True, container=False, height=1100)
71
 
72
- submit_btn.click(generate, [prompt, sampling_steps, seed, strength], [gallery, lastSeed], queue=True)
73
 
74
  txt2img, img2img = set_base_models()
75
  demo.launch(debug=True)
 
1
  from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline
2
  from PIL import Image
3
  import gradio as gr
 
4
  import random
5
  import torch
6
  import math
 
16
  }
17
  """
18
 
19
+ def generate(prompt, samp_steps, seed, progress=gr.Progress(track_tqdm=True)):
20
  if seed < 0:
21
  seed = random.randint(1,999999)
22
+ image = txt2img(
23
+ prompt,
24
+ num_inference_steps=1,
25
+ guidance_scale=0.0,
26
+ generator=torch.manual_seed(seed),
27
+ ).images[0]
 
 
 
28
  upscaled_image = image.resize((1024,1024), 1)
29
  final_image = img2img(
30
  prompt,
31
  upscaled_image,
32
  num_inference_steps=math.ceil(samp_steps/strength),
33
  guidance_scale=5,
34
+ strength=1,
35
  generator=torch.manual_seed(seed),
36
  ).images[0]
37
  return [final_image], seed
38
 
39
  def set_base_models():
40
+ txt2img = AutoPipelineForText2Image.from_pretrained(
41
+ "stabilityai/sdxl-turbo",
42
+ torch_dtype = torch.float16,
43
+ variant = "fp16"
44
+ )
45
+ txt2img.to("cuda")
46
  img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
47
  "Lykon/dreamshaper-8",
48
  torch_dtype = torch.float16,
 
58
  submit_btn = gr.Button("Generate", elem_classes="btn-green")
59
 
60
  with gr.Row():
61
+ sampling_steps = gr.Slider(1, 6, value=3, step=1, label="Refiner steps")
 
62
  seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
63
  lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
64
 
65
  gallery = gr.Gallery(show_label=False, preview=True, container=False, height=1100)
66
 
67
+ submit_btn.click(generate, [prompt, sampling_steps, seed], [gallery, lastSeed], queue=True)
68
 
69
  txt2img, img2img = set_base_models()
70
  demo.launch(debug=True)