Spaces:
Running
on
T4
Running
on
T4
File size: 2,366 Bytes
4358e59 b301caf 3fec1fb 4358e59 f4ff201 3fec1fb 70e3d12 3fec1fb 70e3d12 3fec1fb b47c647 7e9a760 4358e59 548031b 4358e59 dba1359 98b5af6 7e9a760 ae9efe4 76ca690 4358e59 b21649c 4358e59 3fec1fb 4358e59 98b5af6 ca74145 a4ca4f9 ca74145 4358e59 75f237b 3fec1fb 0a14984 3fec1fb 70e3d12 a4ca4f9 548031b 4358e59 a4ca4f9 75f237b 5f1159f a4ca4f9 b47c647 4358e59 6fed0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline
from PIL import Image
import gradio as gr
import random
import torch
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""
def generate(prompt, samp_steps, batch_size, seed, progress=gr.Progress(track_tqdm=True)):
if seed < 0:
seed = random.randint(1,999999)
images = txt2img(
prompt,
num_inference_steps=1,
num_images_per_prompt=batch_size,
guidance_scale=0.0,
generator=torch.manual_seed(seed),
).images
upscaled_images = [img.resize((1024,1024), 1) for img in images]
final_images = img2img(
prompt,
num_inference_steps=samp_steps,
guidance_scale=5,
strength=0.5,
generator=torch.manual_seed(seed),
).images
return gr.update(value = [(img, f"Image {i+1}") for i, img in enumerate(final_images)]), seed
def set_base_models():
txt2img = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype = torch.float16,
variant = "fp16"
)
txt2img.to("cuda")
img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
"Lykon/dreamshaper-8",
torch_dtype = torch.float16,
variant = "fp16"
)
img2img.to("cuda")
return txt2img, img2img
with gr.Blocks(css=css) as demo:
with gr.Column():
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Generate", elem_classes="btn-green")
with gr.Row():
sampling_steps = gr.Slider(1, 20, value=5, step=1, label="Sampling steps")
batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
gallery = gr.Gallery(show_label=False, preview=True, container=False, height=650)
submit_btn.click(generate, [prompt, sampling_steps, batch_size, seed], [gallery, lastSeed], queue=True)
txt2img, img2img = set_base_models()
demo.launch(debug=True) |