Krebzonide commited on
Commit
98b5af6
·
1 Parent(s): 5a5ee63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -15
app.py CHANGED
@@ -1,4 +1,4 @@
1
- from diffusers import StableDiffusionXLPipeline, AutoencoderKL
2
  import torch
3
  import random
4
  import os
@@ -35,7 +35,7 @@ css = """
35
  }
36
  """
37
 
38
- def generate(prompt, neg_prompt, samp_steps, cfg_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)):
39
  prompt = prompt.lower()
40
  if nsfw_filter:
41
  if prompt[:10] == "krebzonide":
@@ -49,10 +49,9 @@ def generate(prompt, neg_prompt, samp_steps, cfg_scale, batch_size, seed, height
49
  seed = random.randint(1,999999)
50
  images = pipe(
51
  prompt,
52
- negative_prompt=neg_prompt,
53
  num_inference_steps=samp_steps,
54
- guidance_scale=cfg_scale,
55
  num_images_per_prompt=batch_size,
 
56
  height=height,
57
  width=width,
58
  generator=torch.manual_seed(seed),
@@ -63,16 +62,13 @@ def set_base_model(base_model_id):
63
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
64
  global model_url_list
65
  model_url = "https://huggingface.co/" + model_url_list[base_model_id]
66
- pipe = StableDiffusionXLPipeline.from_single_file(
67
- model_url,
68
  torch_dtype = torch.float16,
69
- variant = "fp16",
70
- vae = vae,
71
- use_safetensors = True,
72
- use_auth_token=hf_token
73
  )
74
  pipe.to("cuda")
75
- pipe.enable_xformers_memory_efficient_attention()
76
  return pipe
77
 
78
  def update_pixel_ratio(num1, num2):
@@ -100,12 +96,10 @@ examples = [
100
  with gr.Blocks(css=css) as demo:
101
  with gr.Column():
102
  prompt = gr.Textbox(label="Prompt")
103
- negative_prompt = gr.Textbox(label="Negative Prompt")
104
  submit_btn = gr.Button("Generate", elem_classes="btn-green")
105
  with gr.Row():
106
  samp_steps = gr.Slider(1, 30, value=20, step=1, label="Sampling steps")
107
- cfg_scale = gr.Slider(1, 10, value=4, step=0.5, label="Guidance scale")
108
- batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size", interactive=False)
109
  with gr.Row():
110
  height = gr.Slider(label="Height", value=1024, minimum=8, maximum=1536, step=8)
111
  width = gr.Slider(label="Width", value=1024, minimum=8, maximum=1024, step=8)
@@ -116,7 +110,7 @@ with gr.Blocks(css=css) as demo:
116
  with gr.Row():
117
  lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
118
  ex = gr.Examples(examples=examples, inputs=[prompt, negative_prompt])
119
- submit_btn.click(generate, [prompt, negative_prompt, samp_steps, cfg_scale, batch_size, seed, height, width], [gallery, lastSeed], queue=True)
120
  height.release(update_pixel_ratio, [height, width], [pixels, height], queue=False)
121
  width.release(update_pixel_ratio, [width, height], [pixels, width], queue=False)
122
 
 
1
+ from diffusers import AutoPipelineForText2Image
2
  import torch
3
  import random
4
  import os
 
35
  }
36
  """
37
 
38
+ def generate(prompt, samp_steps, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)):
39
  prompt = prompt.lower()
40
  if nsfw_filter:
41
  if prompt[:10] == "krebzonide":
 
49
  seed = random.randint(1,999999)
50
  images = pipe(
51
  prompt,
 
52
  num_inference_steps=samp_steps,
 
53
  num_images_per_prompt=batch_size,
54
+ guidance_scale=0.0,
55
  height=height,
56
  width=width,
57
  generator=torch.manual_seed(seed),
 
62
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
63
  global model_url_list
64
  model_url = "https://huggingface.co/" + model_url_list[base_model_id]
65
+ pipe = AutoPipelineForText2Image.from_pretrained(
66
+ "stabilityai/sdxl-turbo",
67
  torch_dtype = torch.float16,
68
+ variant = "fp16"
69
+ #use_auth_token=hf_token
 
 
70
  )
71
  pipe.to("cuda")
 
72
  return pipe
73
 
74
  def update_pixel_ratio(num1, num2):
 
96
  with gr.Blocks(css=css) as demo:
97
  with gr.Column():
98
  prompt = gr.Textbox(label="Prompt")
 
99
  submit_btn = gr.Button("Generate", elem_classes="btn-green")
100
  with gr.Row():
101
  samp_steps = gr.Slider(1, 30, value=20, step=1, label="Sampling steps")
102
+ batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size", interactive=True)
 
103
  with gr.Row():
104
  height = gr.Slider(label="Height", value=1024, minimum=8, maximum=1536, step=8)
105
  width = gr.Slider(label="Width", value=1024, minimum=8, maximum=1024, step=8)
 
110
  with gr.Row():
111
  lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
112
  ex = gr.Examples(examples=examples, inputs=[prompt, negative_prompt])
113
+ submit_btn.click(generate, [prompt, samp_steps, batch_size, seed, height, width], [gallery, lastSeed], queue=True)
114
  height.release(update_pixel_ratio, [height, width], [pixels, height], queue=False)
115
  width.release(update_pixel_ratio, [width, height], [pixels, width], queue=False)
116