Koleshjr commited on
Commit
2dd1f74
1 Parent(s): 831e0c1

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """app.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1cZj5_KDg88LfgRs3U7RTXz6MiGy_485i
8
+
9
+ ## FRUIT CLASSIFICATION APP
10
+ """
11
+
12
+ import gradio as gr
13
+ from fastai.vision.all import *
14
+ import skimage
15
+ import pathlib
16
+ from PIL import Image
17
+ import albumentations
18
+ from albumentations.pytorch import ToTensorV2
19
+ import timm
20
+
21
+ class AlbumentationsTransform (RandTransform):
22
+ split_idx,order=None,2
23
+ def __init__(self, train_aug, valid_aug): store_attr()
24
+
25
+ def before_call(self, b, split_idx):
26
+ self.idx = split_idx
27
+
28
+ def encodes(self, img: PILImage):
29
+ if self.idx == 0:
30
+ aug_img = self.train_aug(image=np.array(img))['image']
31
+ else:
32
+ aug_img = self.valid_aug(image=np.array(img))['image']
33
+ return PILImage.create(aug_img)
34
+
35
+ def get_valid_aug(): return albumentations.Compose([
36
+ albumentations.Resize(224, 224),
37
+ ], p=1.0)
38
+
39
+ learn = load_learner(path + 'fruit_model_v2.pkl')
40
+
41
+ labels = learn.dls.vocab
42
+
43
+ def predict(img):
44
+
45
+ pred,pred_idx,probs = learn.predict(img)
46
+
47
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
48
+
49
+ title = "Fruit and Vegetation Classifier"
50
+ description = '''A simple app to classify various fruits and vegetables '''
51
+
52
+ examples = [[path + 'Onion.jpg'],
53
+ [path + 'orange.jpg'],
54
+ [path + 'plum.jpg'],
55
+ [path + 'tomato.jpg'],
56
+ [path + 'banana.jpg']]
57
+ enable_queue = True
58
+
59
+ gr.Interface (fn= predict,
60
+ inputs=gr.inputs.Image(shape = (224,224)),
61
+ outputs= gr.outputs.Label(num_top_classes =3),
62
+ title = title,
63
+ description = description,
64
+ examples = examples,
65
+ flagging_options=["Incorrect Prediction"],
66
+ enable_queue = enable_queue).launch(debug = True, share=True)
67
+