Spaces:
Runtime error
Runtime error
Upload fruit_classifier_app.py
Browse files- fruit_classifier_app.py +90 -0
fruit_classifier_app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Fruit_Classifier_app.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1wFmOPbrpLNAJxJsRfdiNoE_r1f8brR6M
|
8 |
+
|
9 |
+
## FRUIT CLASSIFICATION APP
|
10 |
+
"""
|
11 |
+
|
12 |
+
!pip install gradio
|
13 |
+
!pip install -U albumentations
|
14 |
+
!pip install -U albumentations
|
15 |
+
!pip install opencv-python==4.5.4.60
|
16 |
+
!pip install timm==0.6.2.dev0
|
17 |
+
|
18 |
+
#Start by connecting gdrive into the google colab
|
19 |
+
|
20 |
+
from google.colab import drive
|
21 |
+
|
22 |
+
drive.mount('/content/gdrive')
|
23 |
+
path = '/content/gdrive/MyDrive/Fruit_Project/'
|
24 |
+
|
25 |
+
import gradio as gr
|
26 |
+
from fastai.vision.all import *
|
27 |
+
import skimage
|
28 |
+
import pathlib
|
29 |
+
from PIL import Image
|
30 |
+
import albumentations
|
31 |
+
from albumentations.pytorch import ToTensorV2
|
32 |
+
import timm
|
33 |
+
|
34 |
+
plt = platform.system()
|
35 |
+
if plt == 'Linux':
|
36 |
+
pathlib.WindowsPath = pathlib.PosixPath
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# !unzip -o -q /content/gdrive/MyDrive/sign_prediction/ModImages -d Images/
|
41 |
+
|
42 |
+
class AlbumentationsTransform (RandTransform):
|
43 |
+
split_idx,order=None,2
|
44 |
+
def __init__(self, train_aug, valid_aug): store_attr()
|
45 |
+
|
46 |
+
def before_call(self, b, split_idx):
|
47 |
+
self.idx = split_idx
|
48 |
+
|
49 |
+
def encodes(self, img: PILImage):
|
50 |
+
if self.idx == 0:
|
51 |
+
aug_img = self.train_aug(image=np.array(img))['image']
|
52 |
+
else:
|
53 |
+
aug_img = self.valid_aug(image=np.array(img))['image']
|
54 |
+
return PILImage.create(aug_img)
|
55 |
+
|
56 |
+
def get_valid_aug(): return albumentations.Compose([
|
57 |
+
albumentations.Resize(224, 224),
|
58 |
+
], p=1.0)
|
59 |
+
|
60 |
+
learn = load_learner(path + 'fruit_model_v2.pkl')
|
61 |
+
|
62 |
+
labels = learn.dls.vocab
|
63 |
+
|
64 |
+
def predict(img):
|
65 |
+
|
66 |
+
pred,pred_idx,probs = learn.predict(img)
|
67 |
+
|
68 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
69 |
+
|
70 |
+
# predict('/content/gdrive/MyDrive/Fruit_Project/Onion.jpg')
|
71 |
+
|
72 |
+
title = "Fruit and Vegetation Classifier"
|
73 |
+
description = '''A simple app to classify various fruits and vegetables '''
|
74 |
+
|
75 |
+
examples = [[path + 'Onion.jpg'],
|
76 |
+
[path + 'orange.jpg'],
|
77 |
+
[path + 'plum.jpg'],
|
78 |
+
[path + 'tomato.jpg'],
|
79 |
+
[path + 'banana.jpg']]
|
80 |
+
enable_queue = True
|
81 |
+
|
82 |
+
gr.Interface (fn= predict,
|
83 |
+
inputs=gr.inputs.Image(shape = (224,224)),
|
84 |
+
outputs= gr.outputs.Label(num_top_classes =3),
|
85 |
+
title = title,
|
86 |
+
description = description,
|
87 |
+
examples = examples,
|
88 |
+
flagging_options=["Incorrect Prediction"],
|
89 |
+
enable_queue = enable_queue).launch(debug = True, share=True)
|
90 |
+
|