SanderGi's picture
clean up and make contribution ready
38024bc
raw
history blame
6.89 kB
# This modules handles the task queue, results, and leaderboard storage.
import json
import uuid
from datetime import datetime
from pathlib import Path
from typing import Optional
import asyncio
import pandas as pd
from inference import evaluate_model
# Get absolute path
CURRENT_DIR = Path(__file__).parent.absolute()
# Constants
QUEUE_DIR = CURRENT_DIR / "queue"
PATHS = {
"tasks": QUEUE_DIR / "tasks.json",
"results": QUEUE_DIR / "results.json",
"leaderboard": QUEUE_DIR / "leaderboard.json",
}
# Handle storing and loading data from JSON files
class StorageManager:
"""Handles all JSON storage operations"""
def __init__(self, paths: dict[str, Path]):
self.paths = paths
self._ensure_directories()
def _ensure_directories(self):
"""Ensure all necessary directories and files exist"""
for path in self.paths.values():
path.parent.mkdir(parents=True, exist_ok=True)
if not path.exists():
path.write_text("[]")
def load(self, key: str) -> list:
"""Load JSON file"""
return json.loads(self.paths[key].read_text())
def save(self, key: str, data: list):
"""Save data to JSON file"""
self.paths[key].write_text(
json.dumps(data, indent=4, default=str, ensure_ascii=False)
)
def update_task(self, task_id: str, updates: dict):
"""Update specific task with new data"""
tasks = self.load("tasks")
for task in tasks:
if task["id"] == task_id:
task.update(updates)
break
self.save("tasks", tasks)
# Initialize storage manager
storage_manager = StorageManager(PATHS)
# Export external functions
def get_leaderboard_data():
"""Return leaderboard data as DataFrame"""
try:
return pd.DataFrame(storage_manager.load("leaderboard"))
except Exception as e:
print(f"Error loading leaderboard: {e}")
return pd.DataFrame()
def get_results():
"""Return list of evaluation results"""
return storage_manager.load("results")
def get_tasks():
"""Return list of tasks"""
return storage_manager.load("tasks")
def get_status(query: str) -> dict:
"""Check status of a model evaluation task_id or model_name"""
if not query:
return {"error": "Please enter a model name or task ID"}
try:
results = get_results()
tasks = get_tasks()
# First try to find by task ID
result = next((r for r in results if r["task_id"] == query), None)
task = next((t for t in tasks if t["id"] == query), None)
# If not found, try to find by model name
if not result:
result = next((r for r in results if r["model"] == query), None)
if not task:
task = next((t for t in tasks if t["model"] == query), None)
if result:
# If we found results, return them
return {
"status": "completed",
"model": result["model"],
"subset": result["subset"],
"num_files": result["num_files"],
"average_per": result["average_per"],
"average_pwed": result["average_pwed"],
"detailed_results": result["detailed_results"],
"timestamp": result["timestamp"],
}
elif task:
# If we only found task status, return that
return task
else:
return {"error": f"No results found for '{query}'"}
except Exception as e:
print(f"Error checking status: {e}")
return {"error": f"Error checking status: {str(e)}"}
def start_eval_task(
model_name: str, submission_name: str, github_url: Optional[str] = None
) -> str:
"""Start evaluation task in background. Returns task ID that can be used to check status."""
# Generate a task ID
task_id = str(uuid.uuid4())
# Create task entry
task = {
"id": task_id,
"model": model_name,
"subset": "test",
"submission_name": submission_name,
"github_url": github_url,
"status": "queued",
"submitted_at": datetime.now().isoformat(),
}
# Save task
tasks = storage_manager.load("tasks")
tasks.append(task)
storage_manager.save("tasks", tasks)
# Start evaluation in background
asyncio.run(_eval_task(task_id, model_name, submission_name, "test", github_url))
return task_id
async def _eval_task(
task_id: str,
model_name: str,
submission_name: str,
subset: str = "test",
github_url: Optional[str] = None,
max_samples: Optional[int] = None,
):
"""Background task to evaluate model and save updated results"""
try:
# Indicate task is processing
storage_manager.update_task(task_id, {"status": "processing"})
# Evaluate model
result = evaluate_model(model_name, subset, max_samples)
avg_per = result["average_per"]
avg_pwed = result["average_pwed"]
# Save results
print("Saving results...")
current_results = storage_manager.load("results")
current_results.append(result)
storage_manager.save("results", current_results)
# Update leaderboard
print("Updating leaderboard...")
leaderboard = storage_manager.load("leaderboard")
entry = next(
(e for e in leaderboard if e["submission_name"] == submission_name),
None,
)
if entry:
# Simply update with new scores
entry.update(
{
"task_id": task_id,
"average_per": avg_per,
"average_pwed": avg_pwed,
"model": model_name,
"subset": subset,
"github_url": github_url,
"submission_date": datetime.now().isoformat(),
}
)
else:
leaderboard.append(
{
"task_id": task_id,
"submission_id": str(uuid.uuid4()),
"submission_name": submission_name,
"model": model_name,
"average_per": avg_per,
"average_pwed": avg_pwed,
"subset": subset,
"github_url": github_url,
"submission_date": datetime.now().isoformat(),
}
)
storage_manager.save("leaderboard", leaderboard)
storage_manager.update_task(task_id, {"status": "completed"})
print("Evaluation completed successfully")
except Exception as e:
error_msg = f"Evaluation failed: {str(e)}"
print(error_msg)
storage_manager.update_task(task_id, {"status": "failed", "error": error_msg})