File size: 6,888 Bytes
38024bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# This modules handles the task queue, results, and leaderboard storage.

import json
import uuid
from datetime import datetime
from pathlib import Path
from typing import Optional

import asyncio
import pandas as pd

from inference import evaluate_model

# Get absolute path
CURRENT_DIR = Path(__file__).parent.absolute()

# Constants
QUEUE_DIR = CURRENT_DIR / "queue"
PATHS = {
    "tasks": QUEUE_DIR / "tasks.json",
    "results": QUEUE_DIR / "results.json",
    "leaderboard": QUEUE_DIR / "leaderboard.json",
}


# Handle storing and loading data from JSON files
class StorageManager:
    """Handles all JSON storage operations"""

    def __init__(self, paths: dict[str, Path]):
        self.paths = paths
        self._ensure_directories()

    def _ensure_directories(self):
        """Ensure all necessary directories and files exist"""
        for path in self.paths.values():
            path.parent.mkdir(parents=True, exist_ok=True)
            if not path.exists():
                path.write_text("[]")

    def load(self, key: str) -> list:
        """Load JSON file"""
        return json.loads(self.paths[key].read_text())

    def save(self, key: str, data: list):
        """Save data to JSON file"""
        self.paths[key].write_text(
            json.dumps(data, indent=4, default=str, ensure_ascii=False)
        )

    def update_task(self, task_id: str, updates: dict):
        """Update specific task with new data"""
        tasks = self.load("tasks")
        for task in tasks:
            if task["id"] == task_id:
                task.update(updates)
                break
        self.save("tasks", tasks)


# Initialize storage manager
storage_manager = StorageManager(PATHS)


# Export external functions
def get_leaderboard_data():
    """Return leaderboard data as DataFrame"""
    try:
        return pd.DataFrame(storage_manager.load("leaderboard"))
    except Exception as e:
        print(f"Error loading leaderboard: {e}")
        return pd.DataFrame()


def get_results():
    """Return list of evaluation results"""
    return storage_manager.load("results")


def get_tasks():
    """Return list of tasks"""
    return storage_manager.load("tasks")


def get_status(query: str) -> dict:
    """Check status of a model evaluation task_id or model_name"""
    if not query:
        return {"error": "Please enter a model name or task ID"}

    try:
        results = get_results()
        tasks = get_tasks()

        # First try to find by task ID
        result = next((r for r in results if r["task_id"] == query), None)
        task = next((t for t in tasks if t["id"] == query), None)

        # If not found, try to find by model name
        if not result:
            result = next((r for r in results if r["model"] == query), None)
        if not task:
            task = next((t for t in tasks if t["model"] == query), None)

        if result:
            # If we found results, return them
            return {
                "status": "completed",
                "model": result["model"],
                "subset": result["subset"],
                "num_files": result["num_files"],
                "average_per": result["average_per"],
                "average_pwed": result["average_pwed"],
                "detailed_results": result["detailed_results"],
                "timestamp": result["timestamp"],
            }
        elif task:
            # If we only found task status, return that
            return task
        else:
            return {"error": f"No results found for '{query}'"}

    except Exception as e:
        print(f"Error checking status: {e}")
        return {"error": f"Error checking status: {str(e)}"}


def start_eval_task(
    model_name: str, submission_name: str, github_url: Optional[str] = None
) -> str:
    """Start evaluation task in background. Returns task ID that can be used to check status."""

    # Generate a task ID
    task_id = str(uuid.uuid4())

    # Create task entry
    task = {
        "id": task_id,
        "model": model_name,
        "subset": "test",
        "submission_name": submission_name,
        "github_url": github_url,
        "status": "queued",
        "submitted_at": datetime.now().isoformat(),
    }

    # Save task
    tasks = storage_manager.load("tasks")
    tasks.append(task)
    storage_manager.save("tasks", tasks)

    # Start evaluation in background
    asyncio.run(_eval_task(task_id, model_name, submission_name, "test", github_url))

    return task_id


async def _eval_task(
    task_id: str,
    model_name: str,
    submission_name: str,
    subset: str = "test",
    github_url: Optional[str] = None,
    max_samples: Optional[int] = None,
):
    """Background task to evaluate model and save updated results"""
    try:
        # Indicate task is processing
        storage_manager.update_task(task_id, {"status": "processing"})

        # Evaluate model
        result = evaluate_model(model_name, subset, max_samples)
        avg_per = result["average_per"]
        avg_pwed = result["average_pwed"]

        # Save results
        print("Saving results...")
        current_results = storage_manager.load("results")
        current_results.append(result)
        storage_manager.save("results", current_results)

        # Update leaderboard
        print("Updating leaderboard...")
        leaderboard = storage_manager.load("leaderboard")
        entry = next(
            (e for e in leaderboard if e["submission_name"] == submission_name),
            None,
        )

        if entry:
            # Simply update with new scores
            entry.update(
                {
                    "task_id": task_id,
                    "average_per": avg_per,
                    "average_pwed": avg_pwed,
                    "model": model_name,
                    "subset": subset,
                    "github_url": github_url,
                    "submission_date": datetime.now().isoformat(),
                }
            )
        else:
            leaderboard.append(
                {
                    "task_id": task_id,
                    "submission_id": str(uuid.uuid4()),
                    "submission_name": submission_name,
                    "model": model_name,
                    "average_per": avg_per,
                    "average_pwed": avg_pwed,
                    "subset": subset,
                    "github_url": github_url,
                    "submission_date": datetime.now().isoformat(),
                }
            )

        storage_manager.save("leaderboard", leaderboard)
        storage_manager.update_task(task_id, {"status": "completed"})
        print("Evaluation completed successfully")

    except Exception as e:
        error_msg = f"Evaluation failed: {str(e)}"
        print(error_msg)
        storage_manager.update_task(task_id, {"status": "failed", "error": error_msg})