Spaces:
Running
on
Zero
Running
on
Zero
File size: 989 Bytes
5d52c32 6c226f9 d790c0b 88183ad 6c226f9 17f14b2 f696e7e 6c226f9 f696e7e 6c226f9 5d52c32 3da85d4 4731eae 3da85d4 3df1d51 46704ba 4731eae 3df1d51 f696e7e 3da85d4 3df1d51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def transcribe(inputs, previous_transcription):
previous_transcription += pipe(inputs[1], batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
return previous_transcription
with gr.Blocks() as demo:
with gr.Column():
input_audio_microphone = gr.Audio(streaming=True)
output = gr.Textbox(label="Transcription", value="")
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=2, concurrency_limit=None)
demo.queue().launch() |