Spaces:
Running
on
Zero
Running
on
Zero
File size: 992 Bytes
5d52c32 6c226f9 d790c0b 88183ad 6c226f9 17f14b2 9d6fa91 6c226f9 3da85d4 6c226f9 5d52c32 3da85d4 6c226f9 ab14d7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=1,
device=device,
)
@spaces.GPU
def transcribe(inputs, previous_transcription):
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
if previous_transcription:
text = previous_transcription + text
return text
with gr.Blocks() as demo:
input_audio = gr.Audio(streaming=True),
output = gr.Textbox("Transcription")
input_audio.stream(
transcribe,
[input_audio, output],
[output],
time_limit=15,
stream_every=0.5,
concurrency_limit=None
)
demo.queue().launch()
|