Spaces:
Runtime error
Runtime error
File size: 9,333 Bytes
65de097 1b96de2 fcda696 65de097 99f1747 fcda696 8b08f87 65de097 fcda696 d1a9cab e89abb6 d1a9cab eb634d0 65de097 eb634d0 673ce17 a0d75fa d1a9cab 65de097 0f5e1d6 65de097 d1a9cab 65de097 d1a9cab 65de097 d1a9cab 65de097 d1a9cab a0d75fa d1a9cab eb634d0 d1a9cab 65de097 d1a9cab 65de097 d1a9cab 65de097 d1a9cab 3ce6bf0 673ce17 d1a9cab 348d6f5 eb634d0 a0d75fa d1a9cab 7debb98 673ce17 e992f1f eb634d0 31b5073 d998c35 eb634d0 673ce17 d1a9cab 673ce17 d1a9cab c0a41a5 673ce17 c0a41a5 a261746 d1a9cab a261746 d1a9cab a261746 673ce17 c0a41a5 0d4cf4b a261746 c0a41a5 a261746 0d4cf4b d1a9cab d306e8b d1a9cab 673ce17 d1a9cab bbc3d10 d0f36d2 d1a9cab d0f36d2 d1a9cab 65de097 2b1ec5b 65de097 03897e6 d1a9cab 65de097 d1a9cab 018c57c d1a9cab 03897e6 673ce17 d1a9cab 03897e6 d1a9cab 03897e6 d1a9cab 03897e6 673ce17 65de097 d1a9cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import sys
import os
sys.path.append('./')
os.system("pip install gradio accelerate==0.25.0 torchmetrics==1.2.1 tqdm==4.66.1 fastapi==0.111.0 transformers==4.36.2 diffusers==0.25 einops==0.7.0 bitsandbytes scipy==1.11.1 opencv-python gradio==4.24.0 fvcore cloudpickle omegaconf pycocotools basicsr av onnxruntime==1.16.2 peft==0.11.1 huggingface_hub==0.24.7 --no-deps")
import spaces
from fastapi import FastAPI
app = FastAPI()
from PIL import Image
import gradio as gr
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
import torch
from typing import List
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from torchvision.transforms.functional import to_pil_image
import apply_net
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i,j] == True :
mask[i,j] = 1
mask = (mask*255).astype(np.uint8)
output_mask = Image.fromarray(mask)
return output_mask
base_path = 'Keshabwi66/SmartLugaModel'
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(
base_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
base_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(base_path,
subfolder="vae",
torch_dtype=torch.float16,
)
# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
@spaces.GPU
def start_tryon(boy,girl,person_img,cloth_img, garment_des, denoise_steps=10, seed=42):
# Assuming device is set up (e.g., "cuda" or "cpu")
device="cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
# Resize and prepare images
garm_img = cloth_img.convert("RGB").resize((768, 1024))
human_img = person_img.convert("RGB").resize((768,1024))
is_checked=True;
if is_checked:
keypoints = openpose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
mask, mask_gray= get_mask_location('hd', "upper_body", model_parse, keypoints)
mask = mask.resize((768,1024))
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
if boy:
prompt = "A boy is wearing"+garment_des
if girl:
prompt= "A girl is wearing"+garment_des
# Embedding generation for prompts
with torch.no_grad():
with torch.cuda.amp.autocast():
# Generate text embeddings for garment description
prompt = prompt
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)= pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "A photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_cloth,
_,
_,
_,
)= pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
# Convert images to tensors for processing
pose_img_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
# Prepare the generator with optional seed
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
# Generate the virtual try-on output image
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_img_tensor.to(device, torch.float16),
text_embeds_cloth=prompt_embeds_cloth.to(device, torch.float16),
cloth=garm_tensor.to(device, torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img.resize((768, 1024)),
guidance_scale=2.0,
)[0]
return images[0].resize(person_img.size)
# Gradio interface for the virtual try-on model
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown("## SmartLuga")
with gr.Row():
with gr.Column():
person_img = gr.Image(label='Person Image', sources='upload', type="pil")
boy = gr.Checkbox(label="Yes", info="Boy",value=True)
girl = gr.Checkbox(label="Yes", info="Girl",value=False)
with gr.Column():
cloth_img = gr.Image(label='Garment Image', sources='upload', type="pil")
garment_des = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", label="Garment Description")
with gr.Column():
image_out = gr.Image(label="Output Image", elem_id="output-img", show_share_button=False)
try_button = gr.Button(value="Try-on")
try_button.click(fn=start_tryon, inputs=[boy,girl,person_img, cloth_img, garment_des], outputs=[image_out], api_name='tryon')
image_blocks.launch() |