Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
import sys
|
|
|
2 |
import os
|
3 |
-
|
|
|
|
|
4 |
sys.path.append('./')
|
5 |
os.system("pip install gradio accelerate==0.25.0 torchmetrics==1.2.1 tqdm==4.66.1 fastapi==0.111.0 transformers==4.36.2 diffusers==0.25 einops==0.7.0 bitsandbytes scipy==1.11.1 opencv-python gradio==4.24.0 fvcore cloudpickle omegaconf pycocotools basicsr av onnxruntime==1.16.2 peft==0.11.1 huggingface_hub==0.24.7 --no-deps")
|
6 |
-
import spaces
|
7 |
from fastapi import FastAPI
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
from PIL import Image
|
11 |
-
import gradio as gr
|
12 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
13 |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
14 |
from src.unet_hacked_tryon import UNet2DConditionModel
|
@@ -20,15 +20,13 @@ from transformers import (
|
|
20 |
)
|
21 |
from diffusers import DDPMScheduler,AutoencoderKL
|
22 |
from typing import List
|
23 |
-
|
24 |
-
import torch
|
25 |
-
import os
|
26 |
from transformers import AutoTokenizer
|
27 |
import numpy as np
|
|
|
28 |
from torchvision import transforms
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
def pil_to_binary_mask(pil_image, threshold=0):
|
34 |
np_image = np.array(pil_image)
|
@@ -93,7 +91,8 @@ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
|
93 |
torch_dtype=torch.float16,
|
94 |
)
|
95 |
|
96 |
-
|
|
|
97 |
|
98 |
UNet_Encoder.requires_grad_(False)
|
99 |
image_encoder.requires_grad_(False)
|
@@ -124,15 +123,23 @@ pipe = TryonPipeline.from_pretrained(
|
|
124 |
pipe.unet_encoder = UNet_Encoder
|
125 |
|
126 |
@spaces.GPU
|
127 |
-
def start_tryon(person_img,
|
128 |
# Assuming device is set up (e.g., "cuda" or "cpu")
|
|
|
|
|
129 |
pipe.to(device)
|
130 |
pipe.unet_encoder.to(device)
|
131 |
|
132 |
# Resize and prepare images
|
133 |
garm_img = cloth_img.convert("RGB").resize((768, 1024))
|
134 |
human_img = person_img.convert("RGB").resize((768, 1024))
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
pose_img=Image.open("00006_00.jpg")
|
137 |
|
138 |
# Prepare pose image (already uploaded)
|
@@ -215,8 +222,6 @@ with image_blocks as demo:
|
|
215 |
with gr.Row():
|
216 |
with gr.Column():
|
217 |
person_img = gr.Image(label='Person Image', sources='upload', type="pil")
|
218 |
-
mask_img = gr.Image(label='Mask Image', sources='upload', type="pil")
|
219 |
-
|
220 |
with gr.Column():
|
221 |
cloth_img = gr.Image(label='Garment Image', sources='upload', type="pil")
|
222 |
garment_des = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", label="Garment Description")
|
|
|
1 |
import sys
|
2 |
+
import torch
|
3 |
import os
|
4 |
+
import spaces
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
sys.path.append('./')
|
8 |
os.system("pip install gradio accelerate==0.25.0 torchmetrics==1.2.1 tqdm==4.66.1 fastapi==0.111.0 transformers==4.36.2 diffusers==0.25 einops==0.7.0 bitsandbytes scipy==1.11.1 opencv-python gradio==4.24.0 fvcore cloudpickle omegaconf pycocotools basicsr av onnxruntime==1.16.2 peft==0.11.1 huggingface_hub==0.24.7 --no-deps")
|
|
|
9 |
from fastapi import FastAPI
|
10 |
app = FastAPI()
|
11 |
|
|
|
|
|
12 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
13 |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
14 |
from src.unet_hacked_tryon import UNet2DConditionModel
|
|
|
20 |
)
|
21 |
from diffusers import DDPMScheduler,AutoencoderKL
|
22 |
from typing import List
|
|
|
|
|
|
|
23 |
from transformers import AutoTokenizer
|
24 |
import numpy as np
|
25 |
+
from utils_mask import get_mask_location
|
26 |
from torchvision import transforms
|
27 |
+
from preprocess.humanparsing.run_parsing import Parsing
|
28 |
+
from preprocess.openpose.run_openpose import OpenPose
|
29 |
+
from torchvision.transforms.functional import to_pil_image
|
30 |
|
31 |
def pil_to_binary_mask(pil_image, threshold=0):
|
32 |
np_image = np.array(pil_image)
|
|
|
91 |
torch_dtype=torch.float16,
|
92 |
)
|
93 |
|
94 |
+
parsing_model = Parsing(0)
|
95 |
+
openpose_model = OpenPose(0)
|
96 |
|
97 |
UNet_Encoder.requires_grad_(False)
|
98 |
image_encoder.requires_grad_(False)
|
|
|
123 |
pipe.unet_encoder = UNet_Encoder
|
124 |
|
125 |
@spaces.GPU
|
126 |
+
def start_tryon(person_img,cloth_img, garment_des, denoise_steps=10, seed=42):
|
127 |
# Assuming device is set up (e.g., "cuda" or "cpu")
|
128 |
+
device="cuda"
|
129 |
+
openpose_model.preprocessor.body_estimation.model.to(device)
|
130 |
pipe.to(device)
|
131 |
pipe.unet_encoder.to(device)
|
132 |
|
133 |
# Resize and prepare images
|
134 |
garm_img = cloth_img.convert("RGB").resize((768, 1024))
|
135 |
human_img = person_img.convert("RGB").resize((768, 1024))
|
136 |
+
is_checked=True;
|
137 |
+
if is_checked:
|
138 |
+
keypoints = openpose_model(human_img.resize((384,512)))
|
139 |
+
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
140 |
+
mask= get_mask_location('hd', "upper_body", model_parse, keypoints)
|
141 |
+
|
142 |
+
mask = pil_to_binary_mask(mask.convert("RGB").resize((768, 1024)))
|
143 |
pose_img=Image.open("00006_00.jpg")
|
144 |
|
145 |
# Prepare pose image (already uploaded)
|
|
|
222 |
with gr.Row():
|
223 |
with gr.Column():
|
224 |
person_img = gr.Image(label='Person Image', sources='upload', type="pil")
|
|
|
|
|
225 |
with gr.Column():
|
226 |
cloth_img = gr.Image(label='Garment Image', sources='upload', type="pil")
|
227 |
garment_des = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", label="Garment Description")
|