RagVizExpander / app.py
KennyAI01's picture
Initialise the app
79e9767 verified
raw
history blame
6.35 kB
"""
Streamlit app
"""
try:
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
except:
pass
import os
import streamlit as st
from ragvizexpander import RAGVizChain
from ragvizexpander.llms import *
from ragvizexpander.embeddings import *
from ragvizexpander.splitters import RecursiveChar2TokenSplitter
st.set_page_config(
page_title="RAGVizExpander Demo",
page_icon="🔬",
layout="wide"
)
os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"]
os.environ['HF_API_KEY'] = st.secrets["HF_API_KEY"]
if "chart" not in st.session_state:
st.session_state['chart'] = None
if "loaded" not in st.session_state:
st.session_state['loaded'] = False
st.title("RAGVizExpander Demo🔬")
st.markdown("📦 More details can be found at the GitHub repo [here](https://github.com/KKenny0/RAGVizExpander)")
if not st.session_state['loaded']:
main_page = st.empty()
main_button = st.empty()
with main_page.container():
uploaded_file = st.file_uploader("Upload your file",
label_visibility="collapsed",
type=['pdf', 'docx', 'txt', 'pptx'])
# --- setting llm model
st.markdown("### Settings for *LLM* model")
st.session_state["llm_model_type"] = st.radio("Select type of llm model",
["OpenAI", "Ollama"],
horizontal=True)
if st.session_state["llm_model_type"] == "OpenAI":
st.session_state["openai_llm_base_url"] = st.text_input("Enter OpenAI LLM API Base")
st.session_state["openai_llm_api_key"] = st.text_input("Enter OpenAI LLM API Key")
st.session_state["openai_llm_model"] = st.text_input("Enter OpenAI LLM model name")
st.session_state["chosen_llm_model"] = ChatOpenAI(
base_url=st.session_state["openai_llm_base_url"],
api_key=st.session_state["openai_llm_api_key"],
model_name=st.session_state["openai_llm_model"],
)
else:
st.session_state["ollama_llm_model"] = st.text_input("Enter Ollama model name")
st.session_state["chosen_llm_model"] = ChatOllama(model_name=st.session_state["ollama_llm_model"])
st.markdown("""---""")
# --- setting embedding model
st.markdown("### Settings for *EMBEDDING* model")
st.session_state["embedding_model_type"] = st.radio("Select type of embedding model",
["OpenAI", "SentenceTransformer", "HuggingFace", "TEI"],
horizontal=True)
if st.session_state["embedding_model_type"] == "OpenAI":
st.session_state["openai_embed_model"] = st.selectbox("Select embedding model",
["text-embedding-3-small",
"text-embedding-3-large",
"text-embedding-ada-002"])
st.session_state["openai_embed_api_key"] = st.text_input("Enter OpenAI Embedding API Key")
st.session_state["openai_embed_api_base"] = st.text_input("Enter OpenAI Embedding API Base")
st.session_state["chosen_embedding_model"] = OpenAIEmbeddings(
api_base=st.session_state["openai_embed_api_base"],
api_key=st.session_state["openai_embed_api_key"],
model_name=st.session_state["openai_embed_model"],
)
elif st.session_state["embedding_model_type"] == "HuggingFace":
st.session_state["hf_embed_model"] = st.text_input("Enter HF repository name")
st.session_state["hf_api_key"] = st.text_input("Enter HF API key")
st.session_state["chosen_embedding_model"] = HuggingFaceEmbeddings(
model_name=st.session_state["hf_embed_model"],
api_key=st.session_state["hf_api_key"]
)
else:
st.session_state["tei_api_url"] = st.text_input("Enter TEI(Text-Embedding-Inference) api url")
st.session_state["chosen_embedding_model"] = TEIEmbeddings(
api_url=st.session_state["tei_api_url"]
)
st.markdown("""---""")
# --- setting chunking parameters
st.markdown("### Settings for *CHUNKING* model")
st.session_state["chunk_size"] = st.number_input("Chunk size", value=500, min_value=100, max_value=1000, step=100)
st.session_state["chunk_overlap"] = st.number_input("Chunk overlap", value=0, min_value=0, max_value=100, step=10)
st.session_state["split_func"] = RecursiveChar2TokenSplitter(
chunk_size=st.session_state["chunk_size"],
chunk_overlap=st.session_state["chunk_overlap"],
)
if st.button("Build Vector DB"):
st.session_state["client"] = RAGVizChain(embedding_model=st.session_state["chosen_embedding_model"],
llm=st.session_state["chosen_llm_model"],
split_func=st.session_state["split_func"])
main_page.empty()
main_button.empty()
with st.spinner("Building Vector DB"):
st.session_state["client"].load_data(uploaded_file,)
st.session_state['loaded'] = True
st.rerun()
else:
col1, col2 = st.columns(2)
st.session_state['query'] = col1.text_area("Enter your query here")
st.session_state['technique'] = col1.radio("Select retrival technique", ["naive", "HyAE", "multi_qns"], horizontal=True)
st.session_state['top_k'] = col1.number_input("Top k", value=5, min_value=1, max_value=10, step=1)
if col1.button("Execute Query"):
st.session_state['chart'] = st.session_state["client"].visualize_query(st.session_state['query'], retrieval_method=st.session_state['technique'], top_k=st.session_state['top_k'])
if st.session_state['chart'] is not None:
col2.plotly_chart(st.session_state['chart'])
if col1.button("Reset Application"):
st.session_state['loaded'] = False
st.rerun()