File size: 6,353 Bytes
79e9767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
Streamlit app
"""
try:
    __import__('pysqlite3')
    import sys
    sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
except:
    pass

import os
import streamlit as st
from ragvizexpander import RAGVizChain
from ragvizexpander.llms import *
from ragvizexpander.embeddings import *
from ragvizexpander.splitters import RecursiveChar2TokenSplitter

st.set_page_config(
    page_title="RAGVizExpander Demo",
    page_icon="🔬",
    layout="wide"
)

os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"]
os.environ['HF_API_KEY'] = st.secrets["HF_API_KEY"]


if "chart" not in st.session_state:
    st.session_state['chart'] = None

if "loaded" not in st.session_state:
    st.session_state['loaded'] = False

st.title("RAGVizExpander Demo🔬")
st.markdown("📦 More details can be found at the GitHub repo [here](https://github.com/KKenny0/RAGVizExpander)")

if not st.session_state['loaded']:
    main_page = st.empty()
    main_button = st.empty()
    with main_page.container():
        uploaded_file = st.file_uploader("Upload your file",
                                         label_visibility="collapsed",
                                         type=['pdf', 'docx', 'txt', 'pptx'])

        # --- setting llm model
        st.markdown("### Settings for *LLM* model")

        st.session_state["llm_model_type"] = st.radio("Select type of llm model",
                                                      ["OpenAI", "Ollama"],
                                                      horizontal=True)

        if st.session_state["llm_model_type"] == "OpenAI":
            st.session_state["openai_llm_base_url"] = st.text_input("Enter OpenAI LLM API Base")
            st.session_state["openai_llm_api_key"] = st.text_input("Enter OpenAI LLM API Key")
            st.session_state["openai_llm_model"] = st.text_input("Enter OpenAI LLM model name")
            st.session_state["chosen_llm_model"] = ChatOpenAI(
                base_url=st.session_state["openai_llm_base_url"],
                api_key=st.session_state["openai_llm_api_key"],
                model_name=st.session_state["openai_llm_model"],
            )
        else:
            st.session_state["ollama_llm_model"] = st.text_input("Enter Ollama model name")
            st.session_state["chosen_llm_model"] = ChatOllama(model_name=st.session_state["ollama_llm_model"])

        st.markdown("""---""")

        # --- setting embedding model
        st.markdown("### Settings for *EMBEDDING* model")

        st.session_state["embedding_model_type"] = st.radio("Select type of embedding model",
                                                            ["OpenAI", "SentenceTransformer", "HuggingFace", "TEI"],
                                                            horizontal=True)

        if st.session_state["embedding_model_type"] == "OpenAI":
            st.session_state["openai_embed_model"] = st.selectbox("Select embedding model",
                                                                      ["text-embedding-3-small",
                                                                       "text-embedding-3-large",
                                                                       "text-embedding-ada-002"])
            st.session_state["openai_embed_api_key"] = st.text_input("Enter OpenAI Embedding API Key")
            st.session_state["openai_embed_api_base"] = st.text_input("Enter OpenAI Embedding API Base")
            st.session_state["chosen_embedding_model"] = OpenAIEmbeddings(
                api_base=st.session_state["openai_embed_api_base"],
                api_key=st.session_state["openai_embed_api_key"],
                model_name=st.session_state["openai_embed_model"],
            )

        elif st.session_state["embedding_model_type"] == "HuggingFace":
            st.session_state["hf_embed_model"] = st.text_input("Enter HF repository name")
            st.session_state["hf_api_key"] = st.text_input("Enter HF API key")
            st.session_state["chosen_embedding_model"] = HuggingFaceEmbeddings(
                model_name=st.session_state["hf_embed_model"],
                api_key=st.session_state["hf_api_key"]
            )

        else:
            st.session_state["tei_api_url"] = st.text_input("Enter TEI(Text-Embedding-Inference) api url")
            st.session_state["chosen_embedding_model"] = TEIEmbeddings(
                api_url=st.session_state["tei_api_url"]
            )

        st.markdown("""---""")

        # --- setting chunking parameters
        st.markdown("### Settings for *CHUNKING* model")
        st.session_state["chunk_size"] = st.number_input("Chunk size", value=500, min_value=100, max_value=1000, step=100)
        st.session_state["chunk_overlap"] = st.number_input("Chunk overlap", value=0, min_value=0, max_value=100, step=10)
        st.session_state["split_func"] = RecursiveChar2TokenSplitter(
            chunk_size=st.session_state["chunk_size"],
            chunk_overlap=st.session_state["chunk_overlap"],
        )

    if st.button("Build Vector DB"):
        st.session_state["client"] = RAGVizChain(embedding_model=st.session_state["chosen_embedding_model"],
                                                 llm=st.session_state["chosen_llm_model"],
                                                 split_func=st.session_state["split_func"])
        main_page.empty()
        main_button.empty()
        with st.spinner("Building Vector DB"):
            st.session_state["client"].load_data(uploaded_file,)
            st.session_state['loaded'] = True
            st.rerun()
else:
    col1, col2 = st.columns(2)
    st.session_state['query'] = col1.text_area("Enter your query here")
    st.session_state['technique'] = col1.radio("Select retrival technique", ["naive", "HyAE", "multi_qns"], horizontal=True)
    st.session_state['top_k'] = col1.number_input("Top k", value=5, min_value=1, max_value=10, step=1)
    if col1.button("Execute Query"):
            st.session_state['chart'] = st.session_state["client"].visualize_query(st.session_state['query'], retrieval_method=st.session_state['technique'], top_k=st.session_state['top_k'])
    if st.session_state['chart'] is not None:
        col2.plotly_chart(st.session_state['chart'])

    if col1.button("Reset Application"):
        st.session_state['loaded'] = False
        st.rerun()