Kabatubare's picture
Create app.py
4199a1a verified
import torchaudio
import torchaudio.transforms as T
import matplotlib.pyplot as plt
from transformers import AutoProcessor, MusicgenForConditionalGeneration
import gradio as gr
import numpy as np
import torch
# Define available model options for dropdown
model_options = {
"Medium Model": "facebook/musicgen-medium",
"Large Model": "facebook/musicgen-large"
}
# Define style tags options
style_tags_options = ["East Coast", "Trap", "Boom Bap", "Lo-Fi", "Experimental"]
def generate_spectrogram(audio_tensor, sample_rate):
spectrogram_transform = T.MelSpectrogram(sample_rate=sample_rate)
spectrogram = spectrogram_transform(audio_tensor.unsqueeze(0))
spectrogram_db = T.AmplitudeToDB()(spectrogram)
plt.figure(figsize=(10, 4))
plt.imshow(spectrogram_db.log2()[0,:,:].detach().numpy(), cmap='viridis', aspect='auto')
plt.colorbar(format='%+2.0f dB')
plt.title('Mel Spectrogram')
plt.tight_layout()
plt.ylabel('Mel bins')
plt.xlabel('Time')
spectrogram_path = "generated_spectrogram.png"
plt.savefig(spectrogram_path)
plt.close()
return spectrogram_path
def generate_music(description, model_choice, style_tags, tempo, intensity, duration):
try:
processor = AutoProcessor.from_pretrained(model_options[model_choice])
model = MusicgenForConditionalGeneration.from_pretrained(model_options[model_choice])
inputs = processor(text=[description + " " + " ".join(style_tags)], return_tensors="pt", padding=True)
audio_output = model.generate(**inputs, max_new_tokens=256)
sampling_rate = 16000
output_file = "generated_music.wav"
torchaudio.save(output_file, audio_output[0].cpu(), sampling_rate)
spectrogram_path = generate_spectrogram(audio_output[0].squeeze(), sampling_rate)
return output_file, spectrogram_path, None
except Exception as e:
error_message = f"An error occurred: {str(e)}"
return None, None, error_message
iface = gr.Interface(
fn=generate_music,
inputs=[
gr.Textbox(label="Enter a description for the music"),
gr.Dropdown(label="Select Model", choices=list(model_options.keys())),
gr.CheckboxGroup(label="Style Tags", choices=style_tags_options),
gr.Slider(label="Tempo", minimum=60, maximum=240, step=1, value=120),
gr.Slider(label="Intensity", minimum=1, maximum=10, step=1, value=5),
gr.Slider(label="Duration (Seconds)", minimum=15, maximum=300, step=1, value=60)
],
outputs=[
gr.Audio(label="Generated Music"),
gr.Image(label="Spectrogram"),
gr.Textbox(label="Error Message", visible=True)
],
title="Hip Hop Music Generation with MusicGen",
description="Type in a description, select a model, choose style tags, and adjust generation parameters to generate music. Spectrogram and any errors will be displayed."
)
iface.launch()