Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchaudio
|
2 |
+
import torchaudio.transforms as T
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Define available model options for dropdown
|
10 |
+
model_options = {
|
11 |
+
"Medium Model": "facebook/musicgen-medium",
|
12 |
+
"Large Model": "facebook/musicgen-large"
|
13 |
+
}
|
14 |
+
|
15 |
+
# Define style tags options
|
16 |
+
style_tags_options = ["East Coast", "Trap", "Boom Bap", "Lo-Fi", "Experimental"]
|
17 |
+
|
18 |
+
def generate_spectrogram(audio_tensor, sample_rate):
|
19 |
+
spectrogram_transform = T.MelSpectrogram(sample_rate=sample_rate)
|
20 |
+
spectrogram = spectrogram_transform(audio_tensor.unsqueeze(0))
|
21 |
+
spectrogram_db = T.AmplitudeToDB()(spectrogram)
|
22 |
+
|
23 |
+
plt.figure(figsize=(10, 4))
|
24 |
+
plt.imshow(spectrogram_db.log2()[0,:,:].detach().numpy(), cmap='viridis', aspect='auto')
|
25 |
+
plt.colorbar(format='%+2.0f dB')
|
26 |
+
plt.title('Mel Spectrogram')
|
27 |
+
plt.tight_layout()
|
28 |
+
plt.ylabel('Mel bins')
|
29 |
+
plt.xlabel('Time')
|
30 |
+
spectrogram_path = "generated_spectrogram.png"
|
31 |
+
plt.savefig(spectrogram_path)
|
32 |
+
plt.close()
|
33 |
+
return spectrogram_path
|
34 |
+
|
35 |
+
def generate_music(description, model_choice, style_tags, tempo, intensity, duration):
|
36 |
+
try:
|
37 |
+
processor = AutoProcessor.from_pretrained(model_options[model_choice])
|
38 |
+
model = MusicgenForConditionalGeneration.from_pretrained(model_options[model_choice])
|
39 |
+
inputs = processor(text=[description + " " + " ".join(style_tags)], return_tensors="pt", padding=True)
|
40 |
+
|
41 |
+
audio_output = model.generate(**inputs, max_new_tokens=256)
|
42 |
+
|
43 |
+
sampling_rate = 16000
|
44 |
+
output_file = "generated_music.wav"
|
45 |
+
torchaudio.save(output_file, audio_output[0].cpu(), sampling_rate)
|
46 |
+
spectrogram_path = generate_spectrogram(audio_output[0].squeeze(), sampling_rate)
|
47 |
+
|
48 |
+
return output_file, spectrogram_path, None
|
49 |
+
except Exception as e:
|
50 |
+
error_message = f"An error occurred: {str(e)}"
|
51 |
+
return None, None, error_message
|
52 |
+
|
53 |
+
iface = gr.Interface(
|
54 |
+
fn=generate_music,
|
55 |
+
inputs=[
|
56 |
+
gr.Textbox(label="Enter a description for the music"),
|
57 |
+
gr.Dropdown(label="Select Model", choices=list(model_options.keys())),
|
58 |
+
gr.CheckboxGroup(label="Style Tags", choices=style_tags_options),
|
59 |
+
gr.Slider(label="Tempo", minimum=60, maximum=240, step=1, value=120),
|
60 |
+
gr.Slider(label="Intensity", minimum=1, maximum=10, step=1, value=5),
|
61 |
+
gr.Slider(label="Duration (Seconds)", minimum=15, maximum=300, step=1, value=60)
|
62 |
+
],
|
63 |
+
outputs=[
|
64 |
+
gr.Audio(label="Generated Music"),
|
65 |
+
gr.Image(label="Spectrogram"),
|
66 |
+
gr.Textbox(label="Error Message", visible=True)
|
67 |
+
],
|
68 |
+
title="Hip Hop Music Generation with MusicGen",
|
69 |
+
description="Type in a description, select a model, choose style tags, and adjust generation parameters to generate music. Spectrogram and any errors will be displayed."
|
70 |
+
)
|
71 |
+
|
72 |
+
iface.launch()
|