Spaces:
Running
Running
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
from PIL import Image | |
from huggingface_hub import InferenceClient | |
from deep_translator import GoogleTranslator | |
from gradio_client import Client | |
import logging | |
from datetime import datetime | |
token = os.getenv('HF_READ_TOKEN') | |
from logger import log | |
# os.makedirs('assets', exist_ok=True) | |
if not os.path.exists('icon.png'): | |
os.system("wget -O icon.png https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png") | |
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" | |
chatter="K00B404/transcript_image_generator" | |
max_tokens_enhance_bot=128 | |
# Initialize the API client for the chatbot | |
chatbot_client = Client(chatter) | |
timeout = 100 | |
def check_ubuse(prompt,word_list=["little girl"]): | |
for word in word_list: | |
if word in prompt: | |
print(f"Abuse! prompt {prompt} wiped!") | |
return "None" | |
return prompt | |
def enhance_prompt(prompt, model="mistralai/Mistral-7B-Instruct-v0.1", style="photo-realistic"): | |
client = Client("K00B404/Mistral-Nemo-custom") | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
user_message=f"###input image generation prompt### {prompt}" | |
result = client.predict( | |
system_prompt=system_prompt, | |
user_message=user_message, | |
max_tokens=256, | |
model_id=model,# "mistralai/Mistral-Nemo-Instruct-2407", | |
api_name="/predict" | |
) | |
return result | |
# The output value that appears in the "Response" Textbox component. | |
"""result = client.predict( | |
system_prompt=system_prompt,#"You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt", | |
user_message=user_message, | |
max_tokens=500, | |
api_name="/predict" | |
) | |
return result | |
""" | |
def enhance_prompt_v2(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"): | |
client = Client("K00B404/Mistral-Nemo-custom") | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
user_message=f"###input image generation prompt### {prompt}" | |
result = client.predict( | |
system_prompt=system_prompt, | |
user_message=user_message, | |
max_tokens=max_tokens_enhance_bot, | |
model_id=model, | |
api_name="/predict" | |
) | |
return result | |
def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"): | |
client = InferenceClient(api_key=API_TOKEN) | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
response = "" | |
for message in client.chat_completion( | |
model=model, | |
messages=[{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt} | |
], | |
max_tokens=max_tokens_enhance_bot, | |
stream=True, | |
): | |
response += message.choices[0].delta.content | |
return response | |
def chat_with_persona(message, history, system_message, max_tokens, temperature, top_p): | |
"""Function to interact with the chatbot API using the generated persona""" | |
try: | |
# Call the API with the current message and system prompt (persona) | |
response = chatbot_client.predict( | |
message=message, | |
system_message=system_message, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
api_name="/chat" | |
) | |
return response | |
except Exception as e: | |
return f"Error communicating with the chatbot API: {str(e)}" | |
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, | |
strength=0.7, huggingface_api_key=None, use_dev=False, | |
enhance_prompt_style="generic", enhance_prompt_option=False, | |
nemo_enhance_prompt_style="generic", use_mistral_nemo=False): | |
# Log the request (WITHOUT storing API keys) | |
DATA=f"{prompt}|{is_negative}|{steps}|{cfg_scale}|{sampler}|{seed}|{strength}|{use_dev}|{enhance_prompt_style}|{enhance_prompt_option}|{nemo_enhance_prompt_style}|{use_mistral_nemo}" | |
log(file_name="FluxCapacitor_log", data=f"{DATA}") | |
# Determine API URL | |
api_url = API_URL_DEV if use_dev else API_URL | |
# API key handling | |
is_api_call = huggingface_api_key is not None | |
if is_api_call: | |
API_TOKEN = os.getenv("HF_READ_TOKEN") # Use env var in GUI mode | |
else: | |
if huggingface_api_key == "": | |
raise gr.Error("API key is required for API calls.") | |
API_TOKEN = huggingface_api_key | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
if not prompt: # Simplified check | |
return None, None, None | |
key = random.randint(0, 999) | |
prompt = check_ubuse(prompt) | |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
original_prompt = prompt | |
if enhance_prompt_option: | |
style=enhance_prompt_style | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
prompt = chat_with_persona(message=prompt, history=[], system_message=system_prompt, max_tokens=max_tokens_enhance_bot, temperature=0.1, top_p=0.97) | |
#prompt = enhance_prompt_v2(prompt, style=enhance_prompt_style) | |
print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}') | |
if use_mistral_nemo: | |
style=nemo_enhance_prompt_style | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
prompt = chat_with_persona(message=prompt, history=[], system_message=system_prompt, max_tokens=max_tokens_enhance_bot, temperature=0.1, top_p=0.97) | |
#prompt = mistral_nemo_call(prompt, API_TOKEN=API_TOKEN, style=nemo_enhance_prompt_style) | |
print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}') | |
final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {final_prompt}') | |
# Ensure seed is always positive | |
if seed == -1: | |
seed = random.randint(1, 1000000000) | |
payload = { | |
"inputs": final_prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed, | |
"strength": strength | |
} | |
response = requests.post(api_url, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})') | |
# Save the image and return path | |
output_path = f"./output_{key}.png" | |
image.save(output_path) | |
return output_path, seed, prompt if enhance_prompt_option else original_prompt | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None, None, None | |
title_html=""" | |
<center> | |
<div id="title-container"> | |
<h1 id="title-text">FLUX Capacitor</h1> | |
</div> | |
</center> | |
""" | |
css = """ | |
.gradio-container { | |
background: url(https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png); | |
background-size: 900px 1880px; | |
background-repeat: no-repeat; | |
background-position: center; | |
background-attachment: fixed; | |
color:#000; | |
} | |
.dark\:bg-gray-950:is(.dark *) { | |
--tw-bg-opacity: 1; | |
background-color: rgb(0, 17, 0); | |
} | |
.gradio-container-4-41-0 .prose :last-child { | |
margin-top: 8px !important; | |
} | |
.gradio-container-4-41-0 .prose :last-child { | |
margin-bottom: -7px !important; | |
} | |
.dark { | |
--button-primary-background-fill: #000; | |
--button-primary-background-fill-hover: #00000070; | |
--background-fill-primary: #000; | |
--background-fill-secondary: #000; | |
} | |
.hide-container { | |
margin-top;-2px; | |
} | |
#app-container3 { | |
background-color: rgba(255, 255, 255, 0.001); /* Corrected to make semi-transparent */ | |
max-width: 1600px; | |
margin-left: auto; | |
margin-right: auto; | |
margin-bottom: 10px; | |
border-radius: 125px; | |
box-shadow: 0 0 10px rgba(0,0,0,0.1); /* Adjusted shadow opacity */ | |
} | |
#app-container { | |
background-color: rgba(255, 255, 255, 0.001); /* Semi-transparent background */ | |
max-width: 600px; | |
margin: 0 auto; /* Center horizontally */ | |
padding-bottom: 10px; | |
border-radius: 25px; | |
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adjusted shadow opacity */ | |
} | |
.panel-container { | |
background-image: url('your-neon-border-image.png'); | |
background-size: 100% 100%; /* Adjust the size to cover the container */ | |
background-repeat: no-repeat; | |
background-position: center; | |
} | |
#title-container { | |
display: flex; | |
align-items: center | |
margin-bottom:10px; | |
justify-content: center; | |
} | |
#title-icon { | |
width: 32px; | |
height: auto; | |
margin-right: 10px; | |
} | |
#title-text { | |
font-size: 30px; | |
font-weight: bold; | |
color: #000; | |
} | |
:root { | |
--panel-size: 300px; | |
--border-width: 4px; | |
--glow-blur: 15px; | |
} | |
body { | |
background-color: #000; | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
min-height: 100vh; | |
margin: 0; | |
} | |
.neon-panel { | |
width: var(--panel-size); | |
height: var(--panel-size); | |
background-color: #000; | |
position: relative; | |
border-radius: 20px; | |
overflow: hidden; | |
} | |
.neon-panel::before, | |
.neon-panel::after { | |
content: ''; | |
position: absolute; | |
left: -2px; | |
top: -2px; | |
background: linear-gradient( | |
124deg, | |
#ff2400, #e81d1d, #e8b71d, #e3e81d, #1de840, | |
#1ddde8, #2b1de8, #000, #dd00f3 | |
); | |
background-size: 300% 300%; | |
width: calc(100% + 4px); | |
height: calc(100% + 4px); | |
z-index: -1; | |
animation: moveGradient 10s ease infinite; | |
} | |
.neon-panel::after { | |
filter: blur(var(--glow-blur)); | |
} | |
.neon-panel-content { | |
position: absolute; | |
top: var(--border-width); | |
left: var(--border-width); | |
right: var(--border-width); | |
bottom: var(--border-width); | |
background-color: #000; | |
border-radius: 16px; | |
z-index: 1; | |
} | |
@keyframes moveGradient { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
@media (max-width: 768px) { | |
:root { | |
--panel-size: 250px; | |
--glow-blur: 10px; | |
} | |
} | |
@media (prefers-reduced-motion: reduce) { | |
.neon-panel::before, | |
.neon-panel::after { | |
animation: none; | |
} | |
} | |
""" | |
js_script = """ | |
<script> | |
function detectWindowChange() { | |
let lastX = window.screenX; | |
let lastY = window.screenY; | |
let lastW = window.innerWidth; | |
let lastH = window.innerHeight; | |
setInterval(async function() { | |
if (window.screenX !== lastX || window.screenY !== lastY || | |
window.innerWidth !== lastW || window.innerHeight !== lastH) { | |
lastX = window.screenX; | |
lastY = window.screenY; | |
lastW = window.innerWidth; | |
lastH = window.innerHeight; | |
let response = await fetch("/get_bounds"); | |
let data = await response.json(); | |
updateNeonGlow(data.x, data.y, data.w, data.h); | |
} | |
}, 500); | |
} | |
detectWindowChange(); | |
</script> | |
""" | |
with gr.Blocks( css=css) as app: | |
gr.HTML(title_html+ js_script) # title html | |
with gr.Column(elem_id="app-container"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") | |
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key") | |
use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox") | |
enhance_prompt_style = gr.Textbox(label="Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="enhance-prompt-style") | |
enhance_prompt_option = gr.Checkbox(label="Enhance Prompt", value=False, elem_id="enhance-prompt-checkbox") | |
use_mistral_nemo = gr.Checkbox(label="Use Mistral Nemo", value=False, elem_id="use-mistral-checkbox") | |
nemo_prompt_style = gr.Textbox(label="Nemo Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="nemo-enhance-prompt-style") | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") | |
with gr.Row(): | |
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output") | |
final_prompt_output = gr.Textbox(label="Final Prompt", elem_id="final-prompt-output") | |
inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev, enhance_prompt_style,enhance_prompt_option, enhance_prompt_style, use_mistral_nemo] | |
# Adjust the click function to include the API key, use_dev, and enhance_prompt_option as inputs | |
text_button.click(query, inputs=inputs, outputs=[image_output, seed_output, final_prompt_output]) | |
app.launch(show_api=True, share=False, show_error=True) |