import gradio as gr import requests import io import random import os from PIL import Image from huggingface_hub import InferenceClient from deep_translator import GoogleTranslator from gradio_client import Client import logging from datetime import datetime token = os.getenv('HF_READ_TOKEN') from logger import log # os.makedirs('assets', exist_ok=True) if not os.path.exists('icon.png'): os.system("wget -O icon.png https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png") API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" chatter="K00B404/transcript_image_generator" max_tokens_enhance_bot=128 # Initialize the API client for the chatbot chatbot_client = Client(chatter) timeout = 100 def check_ubuse(prompt,word_list=["little girl"]): for word in word_list: if word in prompt: print(f"Abuse! prompt {prompt} wiped!") return "None" return prompt def enhance_prompt(prompt, model="mistralai/Mistral-7B-Instruct-v0.1", style="photo-realistic"): client = Client("K00B404/Mistral-Nemo-custom") system_prompt=f""" You are a image generation prompt enhancer specialized in the {style} style. You must respond only with the enhanced version of the users input prompt Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd """ user_message=f"###input image generation prompt### {prompt}" result = client.predict( system_prompt=system_prompt, user_message=user_message, max_tokens=256, model_id=model,# "mistralai/Mistral-Nemo-Instruct-2407", api_name="/predict" ) return result # The output value that appears in the "Response" Textbox component. """result = client.predict( system_prompt=system_prompt,#"You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt", user_message=user_message, max_tokens=500, api_name="/predict" ) return result """ def enhance_prompt_v2(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"): client = Client("K00B404/Mistral-Nemo-custom") system_prompt=f""" You are a image generation prompt enhancer specialized in the {style} style. You must respond only with the enhanced version of the users input prompt Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd """ user_message=f"###input image generation prompt### {prompt}" result = client.predict( system_prompt=system_prompt, user_message=user_message, max_tokens=max_tokens_enhance_bot, model_id=model, api_name="/predict" ) return result def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"): client = InferenceClient(api_key=API_TOKEN) system_prompt=f""" You are a image generation prompt enhancer specialized in the {style} style. You must respond only with the enhanced version of the users input prompt Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd """ response = "" for message in client.chat_completion( model=model, messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ], max_tokens=max_tokens_enhance_bot, stream=True, ): response += message.choices[0].delta.content return response def chat_with_persona(message, history, system_message, max_tokens, temperature, top_p): """Function to interact with the chatbot API using the generated persona""" try: # Call the API with the current message and system prompt (persona) response = chatbot_client.predict( message=message, system_message=system_message, max_tokens=max_tokens, temperature=temperature, top_p=top_p, api_name="/chat" ) return response except Exception as e: return f"Error communicating with the chatbot API: {str(e)}" def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False, enhance_prompt_style="generic", enhance_prompt_option=False, nemo_enhance_prompt_style="generic", use_mistral_nemo=False): # Log the request (WITHOUT storing API keys) DATA=f"{prompt}|{is_negative}|{steps}|{cfg_scale}|{sampler}|{seed}|{strength}|{use_dev}|{enhance_prompt_style}|{enhance_prompt_option}|{nemo_enhance_prompt_style}|{use_mistral_nemo}" log(file_name="FluxCapacitor_log", data=f"{DATA}") # Determine API URL api_url = API_URL_DEV if use_dev else API_URL # API key handling is_api_call = huggingface_api_key is not None if is_api_call: API_TOKEN = os.getenv("HF_READ_TOKEN") # Use env var in GUI mode else: if huggingface_api_key == "": raise gr.Error("API key is required for API calls.") API_TOKEN = huggingface_api_key headers = {"Authorization": f"Bearer {API_TOKEN}"} if not prompt: # Simplified check return None, None, None key = random.randint(0, 999) prompt = check_ubuse(prompt) print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') original_prompt = prompt if enhance_prompt_option: style=enhance_prompt_style system_prompt=f""" You are a image generation prompt enhancer specialized in the {style} style. You must respond only with the enhanced version of the users input prompt Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd """ prompt = chat_with_persona(message=prompt, history=[], system_message=system_prompt, max_tokens=max_tokens_enhance_bot, temperature=0.1, top_p=0.97) #prompt = enhance_prompt_v2(prompt, style=enhance_prompt_style) print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}') if use_mistral_nemo: style=nemo_enhance_prompt_style system_prompt=f""" You are a image generation prompt enhancer specialized in the {style} style. You must respond only with the enhanced version of the users input prompt Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd """ prompt = chat_with_persona(message=prompt, history=[], system_message=system_prompt, max_tokens=max_tokens_enhance_bot, temperature=0.1, top_p=0.97) #prompt = mistral_nemo_call(prompt, API_TOKEN=API_TOKEN, style=nemo_enhance_prompt_style) print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}') final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mGeneration {key}:\033[0m {final_prompt}') # Ensure seed is always positive if seed == -1: seed = random.randint(1, 1000000000) payload = { "inputs": final_prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed, "strength": strength } response = requests.post(api_url, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})') # Save the image and return path output_path = f"./output_{key}.png" image.save(output_path) return output_path, seed, prompt if enhance_prompt_option else original_prompt except Exception as e: print(f"Error when trying to open the image: {e}") return None, None, None title_html="""