Spaces:
Sleeping
Sleeping
Update text/japanese_bert.py
Browse files- text/japanese_bert.py +15 -24
text/japanese_bert.py
CHANGED
@@ -1,15 +1,15 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
-
import sys
|
4 |
-
import os
|
5 |
-
from text.japanese import text2sep_kata
|
6 |
from config import config
|
|
|
7 |
|
8 |
MODEL_ID = "ku-nlp/deberta-v2-large-japanese-char-wwm"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
10 |
|
11 |
models = dict()
|
12 |
|
|
|
13 |
def get_bert_feature(
|
14 |
text,
|
15 |
word2ph,
|
@@ -17,9 +17,7 @@ def get_bert_feature(
|
|
17 |
style_text=None,
|
18 |
style_weight=0.7,
|
19 |
):
|
20 |
-
|
21 |
-
text = "".join(sep_text)
|
22 |
-
|
23 |
if style_text:
|
24 |
style_text = "".join(text2sep_kata(style_text)[0])
|
25 |
|
@@ -37,42 +35,35 @@ def get_bert_feature(
|
|
37 |
models[device] = AutoModelForMaskedLM.from_pretrained(MODEL_ID).to(device)
|
38 |
|
39 |
with torch.no_grad():
|
40 |
-
# Tokenize text into subwords for correct alignment
|
41 |
-
tokens = [tokenizer.tokenize(t) for t in sep_text]
|
42 |
-
flat_tokens = [item for sublist in tokens for item in sublist]
|
43 |
-
word2ph_token = [len(t) for t in tokens]
|
44 |
-
word2ph_token = [1] + word2ph_token + [1] # Account for [CLS] and [SEP]
|
45 |
-
|
46 |
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True)
|
47 |
for k in inputs:
|
48 |
inputs[k] = inputs[k].to(device)
|
49 |
-
|
50 |
res = models[device](**inputs, output_hidden_states=True)
|
51 |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].float().cpu()
|
52 |
|
53 |
if style_text:
|
54 |
-
style_inputs = tokenizer(style_text, return_tensors="pt")
|
55 |
for k in style_inputs:
|
56 |
style_inputs[k] = style_inputs[k].to(device)
|
57 |
style_res = models[device](**style_inputs, output_hidden_states=True)
|
58 |
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].float().cpu()
|
59 |
style_res_mean = style_res.mean(0)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
phone_level_feature = []
|
67 |
-
for i in range(len(
|
68 |
if style_text:
|
69 |
-
|
70 |
-
res[i].repeat(
|
71 |
-
+ style_res_mean.repeat(
|
72 |
)
|
73 |
else:
|
74 |
-
|
75 |
-
phone_level_feature.append(
|
76 |
|
77 |
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
78 |
return phone_level_feature.T
|
|
|
1 |
+
import sys
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
|
|
|
|
|
4 |
from config import config
|
5 |
+
from text.japanese import text2sep_kata
|
6 |
|
7 |
MODEL_ID = "ku-nlp/deberta-v2-large-japanese-char-wwm"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
9 |
|
10 |
models = dict()
|
11 |
|
12 |
+
|
13 |
def get_bert_feature(
|
14 |
text,
|
15 |
word2ph,
|
|
|
17 |
style_text=None,
|
18 |
style_weight=0.7,
|
19 |
):
|
20 |
+
text = "".join(text2sep_kata(text)[0])
|
|
|
|
|
21 |
if style_text:
|
22 |
style_text = "".join(text2sep_kata(style_text)[0])
|
23 |
|
|
|
35 |
models[device] = AutoModelForMaskedLM.from_pretrained(MODEL_ID).to(device)
|
36 |
|
37 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True)
|
39 |
for k in inputs:
|
40 |
inputs[k] = inputs[k].to(device)
|
|
|
41 |
res = models[device](**inputs, output_hidden_states=True)
|
42 |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].float().cpu()
|
43 |
|
44 |
if style_text:
|
45 |
+
style_inputs = tokenizer(style_text, return_tensors="pt", add_special_tokens=True)
|
46 |
for k in style_inputs:
|
47 |
style_inputs[k] = style_inputs[k].to(device)
|
48 |
style_res = models[device](**style_inputs, output_hidden_states=True)
|
49 |
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].float().cpu()
|
50 |
style_res_mean = style_res.mean(0)
|
51 |
|
52 |
+
# ✅ Force truncate ให้ความยาวตรงกับ word2ph
|
53 |
+
min_len = min(len(word2ph), res.shape[0])
|
54 |
+
word2phone = word2ph[:min_len]
|
55 |
+
res = res[:min_len]
|
56 |
|
57 |
phone_level_feature = []
|
58 |
+
for i in range(len(word2phone)):
|
59 |
if style_text:
|
60 |
+
repeat_feature = (
|
61 |
+
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
|
62 |
+
+ style_res_mean.repeat(word2phone[i], 1) * style_weight
|
63 |
)
|
64 |
else:
|
65 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
66 |
+
phone_level_feature.append(repeat_feature)
|
67 |
|
68 |
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
69 |
return phone_level_feature.T
|