Spaces:
Sleeping
Sleeping
import sys | |
import torch | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
from config import config | |
from text.japanese import text2sep_kata | |
MODEL_ID = "ku-nlp/deberta-v2-large-japanese-char-wwm" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
models = dict() | |
def get_bert_feature( | |
text, | |
word2ph, | |
device=config.bert_gen_config.device, | |
style_text=None, | |
style_weight=0.7, | |
): | |
text = "".join(text2sep_kata(text)[0]) | |
if style_text: | |
style_text = "".join(text2sep_kata(style_text)[0]) | |
if sys.platform == "darwin" and torch.backends.mps.is_available() and device == "cpu": | |
device = "mps" | |
if not device: | |
device = "cuda" | |
if device not in models: | |
if config.webui_config.fp16_run: | |
models[device] = AutoModelForMaskedLM.from_pretrained( | |
MODEL_ID, torch_dtype=torch.float16 | |
).to(device) | |
else: | |
models[device] = AutoModelForMaskedLM.from_pretrained(MODEL_ID).to(device) | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True) | |
for k in inputs: | |
inputs[k] = inputs[k].to(device) | |
res = models[device](**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].float().cpu() | |
if style_text: | |
style_inputs = tokenizer(style_text, return_tensors="pt", add_special_tokens=True) | |
for k in style_inputs: | |
style_inputs[k] = style_inputs[k].to(device) | |
style_res = models[device](**style_inputs, output_hidden_states=True) | |
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].float().cpu() | |
style_res_mean = style_res.mean(0) | |
# ✅ Force truncate ให้ความยาวตรงกับ word2ph | |
min_len = min(len(word2ph), res.shape[0]) | |
word2phone = word2ph[:min_len] | |
res = res[:min_len] | |
phone_level_feature = [] | |
for i in range(len(word2phone)): | |
if style_text: | |
repeat_feature = ( | |
res[i].repeat(word2phone[i], 1) * (1 - style_weight) | |
+ style_res_mean.repeat(word2phone[i], 1) * style_weight | |
) | |
else: | |
repeat_feature = res[i].repeat(word2phone[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |