wuwa-bert-vits2 / text /japanese_bert.py
JotunnBurton's picture
Update text/japanese_bert.py
cccafbc verified
raw
history blame contribute delete
2.45 kB
import sys
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
from config import config
from text.japanese import text2sep_kata
MODEL_ID = "ku-nlp/deberta-v2-large-japanese-char-wwm"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
models = dict()
def get_bert_feature(
text,
word2ph,
device=config.bert_gen_config.device,
style_text=None,
style_weight=0.7,
):
text = "".join(text2sep_kata(text)[0])
if style_text:
style_text = "".join(text2sep_kata(style_text)[0])
if sys.platform == "darwin" and torch.backends.mps.is_available() and device == "cpu":
device = "mps"
if not device:
device = "cuda"
if device not in models:
if config.webui_config.fp16_run:
models[device] = AutoModelForMaskedLM.from_pretrained(
MODEL_ID, torch_dtype=torch.float16
).to(device)
else:
models[device] = AutoModelForMaskedLM.from_pretrained(MODEL_ID).to(device)
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True)
for k in inputs:
inputs[k] = inputs[k].to(device)
res = models[device](**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].float().cpu()
if style_text:
style_inputs = tokenizer(style_text, return_tensors="pt", add_special_tokens=True)
for k in style_inputs:
style_inputs[k] = style_inputs[k].to(device)
style_res = models[device](**style_inputs, output_hidden_states=True)
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].float().cpu()
style_res_mean = style_res.mean(0)
# ✅ Force truncate ให้ความยาวตรงกับ word2ph
min_len = min(len(word2ph), res.shape[0])
word2phone = word2ph[:min_len]
res = res[:min_len]
phone_level_feature = []
for i in range(len(word2phone)):
if style_text:
repeat_feature = (
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
+ style_res_mean.repeat(word2phone[i], 1) * style_weight
)
else:
repeat_feature = res[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T