Spaces:
Running
Running
# β Patched full version of app.py with isolated tts_split per model | |
import sys | |
import logging | |
import os | |
import json | |
import torch | |
import argparse | |
import commons | |
import utils | |
import gradio as gr | |
import numpy as np | |
import librosa | |
import re_matching | |
from tools.sentence import split_by_language | |
from huggingface_hub import hf_hub_download, list_repo_files | |
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s") | |
logger = logging.getLogger(__name__) | |
def get_net_g(model_path: str, version: str, device: str, hps): | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
return net_g | |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
style_text = None if style_text == "" else style_text | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight) | |
del word2ph | |
assert bert.shape[-1] == len(phone) | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, phone, tone, language | |
def infer(*args, **kwargs): | |
from infer import infer as real_infer | |
return real_infer(*args, **kwargs) | |
def tts_split( | |
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, | |
language, cut_by_sent, interval_between_para, interval_between_sent, | |
reference_audio, emotion, style_text, style_weight, | |
hps, net_g, device | |
): | |
if style_text == "": | |
style_text = None | |
if language == "mix": | |
return ("'mix' not supported in this simplified split function", None) | |
while text.find("\n\n") != -1: | |
text = text.replace("\n\n", "\n") | |
para_list = re_matching.cut_para(text) | |
audio_list = [] | |
with torch.no_grad(): | |
if cut_by_sent: | |
for pidx, p in enumerate(para_list): | |
sent_list = re_matching.cut_sent(p) | |
for sidx, s in enumerate(sent_list): | |
skip_start = not (pidx == 0 and sidx == 0) | |
skip_end = not (pidx == len(para_list) - 1 and sidx == len(sent_list) - 1) | |
audio = infer( | |
s, | |
reference_audio=reference_audio, | |
emotion=emotion, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
language=language, | |
hps=hps, | |
net_g=net_g, | |
device=device, | |
style_text=style_text, | |
style_weight=style_weight, | |
skip_start=skip_start, | |
skip_end=skip_end, | |
) | |
audio_list.append(audio) | |
audio_list.append(np.zeros((int)(hps.data.sampling_rate * interval_between_sent), dtype=np.int16)) | |
if (interval_between_para - interval_between_sent) > 0: | |
audio_list.append(np.zeros((int)(hps.data.sampling_rate * (interval_between_para - interval_between_sent)), dtype=np.int16)) | |
else: | |
for idx, p in enumerate(para_list): | |
skip_start = idx != 0 | |
skip_end = idx != len(para_list) - 1 | |
audio = infer( | |
p, | |
reference_audio=reference_audio, | |
emotion=emotion, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
language=language, | |
hps=hps, | |
net_g=net_g, | |
device=device, | |
style_text=style_text, | |
style_weight=style_weight, | |
skip_start=skip_start, | |
skip_end=skip_end, | |
) | |
audio_list.append(audio) | |
audio_list.append(np.zeros((int)(hps.data.sampling_rate * interval_between_para), dtype=np.int16)) | |
final_audio = np.concatenate(audio_list) | |
return "Success", (hps.data.sampling_rate, final_audio) | |
def create_split_fn(hps, net_g, device): | |
def split_fn( | |
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, | |
language, cut_by_sent, interval_between_para, interval_between_sent, | |
reference_audio, emotion, style_text, style_weight | |
): | |
return tts_split( | |
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, | |
language, cut_by_sent, interval_between_para, interval_between_sent, | |
reference_audio, emotion, style_text, style_weight, | |
hps=hps, net_g=net_g, device=device | |
) | |
return split_fn | |
def load_audio(path): | |
audio, sr = librosa.load(path, 48000) | |
return sr, audio | |
def gr_util(item): | |
if item == "Text prompt": | |
return {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"} | |
else: | |
return {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"} | |
def create_tts_fn(hps, net_g, device): | |
def tts_fn( | |
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language, | |
reference_audio, emotion, prompt_mode, style_text, style_weight | |
): | |
if style_text == "": | |
style_text = None | |
if prompt_mode == "Audio prompt": | |
if reference_audio is None: | |
return ("Invalid audio prompt", None) | |
else: | |
reference_audio = load_audio(reference_audio)[1] | |
else: | |
reference_audio = None | |
audio = infer( | |
text=text, | |
reference_audio=reference_audio, | |
emotion=emotion, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
language=language, | |
hps=hps, | |
net_g=net_g, | |
device=device, | |
style_text=style_text, | |
style_weight=style_weight, | |
) | |
return "Success", (hps.data.sampling_rate, audio) | |
return tts_fn | |
# Function to build a single tab per model | |
def create_tab(name,title, example, speakers, tts_fn, split_fn, repid): | |
with gr.TabItem(name): | |
gr.Markdown( | |
'<div align="center">' | |
f'<a><strong>{repid}</strong></a>' | |
f'<br>' | |
f'<a><strong>{title}</strong></a>' | |
f'</div>' | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input text", lines=5, value=example) | |
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker") | |
prompt_mode = gr.Radio(["Text prompt", "Audio prompt"], label="Prompt Mode", value="Text prompt") | |
text_prompt = gr.Textbox(label="Text prompt", value="Happy", visible=True) | |
audio_prompt = gr.Audio(label="Audio prompt", type="filepath", visible=False) | |
sdp_ratio = gr.Slider(0, 1, 0.2, 0.1, label="SDP Ratio") | |
noise_scale = gr.Slider(0.1, 2.0, 0.6, 0.1, label="Noise") | |
noise_scale_w = gr.Slider(0.1, 2.0, 0.8, 0.1, label="Noise_W") | |
length_scale = gr.Slider(0.1, 2.0, 1.0, 0.1, label="Length") | |
language = gr.Dropdown(choices=["JP", "ZH", "EN", "mix", "auto"], value="JP", label="Language") | |
btn = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(): | |
with gr.Accordion("Semantic Fusion", open=False): | |
gr.Markdown( | |
value="Use auxiliary text semantics to assist speech generation (language remains same as main text)\n\n" | |
"**Note**: Avoid using *command-style text* (e.g., 'Happy'). Use *emotionally rich text* (e.g., 'I'm so happy!!!')\n\n" | |
"Leave it blank to disable. \n\n" | |
"**If mispronunciations occur, try replacing characters and inputting the original here with weight set to 1.0 for semantic retention.**" | |
) | |
style_text = gr.Textbox(label="Auxiliary Text") | |
style_weight = gr.Slider(0, 1, 0.7, 0.1, label="Weight", info="Ratio between main and auxiliary BERT embeddings") | |
with gr.Row(): | |
with gr.Column(): | |
interval_between_sent = gr.Slider(0, 5, 0.2, 0.1, label="Pause between sentences (sec)") | |
interval_between_para = gr.Slider(0, 10, 1, 0.1, label="Pause between paragraphs (sec)") | |
opt_cut_by_sent = gr.Checkbox(label="Split by sentence") | |
slicer = gr.Button("Split and Generate", variant="primary") | |
with gr.Column(): | |
output_msg = gr.Textbox(label="Output Message") | |
output_audio = gr.Audio(label="Output Audio") | |
prompt_mode.change(lambda x: gr_util(x), inputs=[prompt_mode], outputs=[text_prompt, audio_prompt]) | |
audio_prompt.upload(lambda x: load_audio(x), inputs=[audio_prompt], outputs=[audio_prompt]) | |
btn.click( | |
tts_fn, | |
inputs=[ | |
input_text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language, | |
audio_prompt, text_prompt, prompt_mode, style_text, style_weight | |
], | |
outputs=[output_msg, output_audio], | |
) | |
slicer.click( | |
split_fn, | |
inputs=[ | |
input_text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language, | |
opt_cut_by_sent, interval_between_para, interval_between_sent, | |
audio_prompt, text_prompt, style_text, style_weight | |
], | |
outputs=[output_msg, output_audio], | |
) | |
# --- Main entry point --- | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", default=False, help="make link public", action="store_true") | |
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log") | |
args = parser.parse_args() | |
if args.debug: | |
logger.setLevel(logging.DEBUG) | |
with open("pretrained_models/info.json", "r", encoding="utf-8") as f: | |
models_info = json.load(f) | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
models = [] | |
for _, info in models_info.items(): | |
if not info['enable']: | |
continue | |
name, title, repid, example, filename = info['name'], info['title'], info['repid'], info['example'], info['filename'] | |
files = list_repo_files(repo_id=repid) | |
model_subfolder = None | |
for f in files: | |
if f.endswith(filename): | |
parts = f.split("/") | |
if len(parts) > 1: | |
model_subfolder = "/".join(parts[:-1]) | |
break | |
if model_subfolder: | |
model_path = hf_hub_download(repo_id=repid, filename=filename, subfolder=model_subfolder) | |
config_path = hf_hub_download(repo_id=repid, filename="config.json", subfolder=model_subfolder) | |
else: | |
model_path = hf_hub_download(repo_id=repid, filename=filename) | |
config_path = hf_hub_download(repo_id=repid, filename="config.json") | |
hps = utils.get_hparams_from_file(config_path) | |
version = hps.version if hasattr(hps, "version") else "v2" | |
net_g = get_net_g(model_path, version, device, hps) | |
tts_fn = create_tts_fn(hps, net_g, device) | |
split_fn = create_split_fn(hps, net_g, device) | |
models.append((name,title, example, list(hps.data.spk2id.keys()), tts_fn, split_fn, repid)) | |
with gr.Blocks(theme='NoCrypt/miku') as app: | |
gr.Markdown("## β All models loaded successfully. Ready to use.") | |
with gr.Tabs(): | |
for (name,title, example, speakers, tts_fn, split_fn, repid) in models: | |
create_tab(name,title, example, speakers, tts_fn, split_fn, repid) | |
app.queue().launch(share=args.share) | |
# Then patch create_tab to accept split_fn and use it in slicer.click | |
# And in the model loop, generate both tts_fn and split_fn then pass both into create_tab | |
# (Same as your current setup but now split_fn is isolated per model just like tts_fn) | |