Spaces:
Sleeping
Sleeping
File size: 8,411 Bytes
760e479 c3d3e4f bec57ee b9de5dd 760e479 c3d3e4f 0fc12b1 c3d3e4f 760e479 7709d54 c3d3e4f 7709d54 c3d3e4f 7709d54 c3d3e4f 7709d54 c3d3e4f 7709d54 c3d3e4f 7709d54 c3d3e4f 7709d54 c3d3e4f b9de5dd c3d3e4f b9de5dd c3d3e4f 760e479 c3d3e4f 13f4210 760e479 41cc307 760e479 41cc307 c3d3e4f 41cc307 42dd197 41cc307 0fc12b1 760e479 6920d86 13f4210 c3d3e4f 13f4210 6920d86 13f4210 760e479 c3d3e4f 760e479 c3d3e4f 760e479 6920d86 8458ece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import sys
import logging
import os
import json
import torch
import argparse
import commons
import utils
import gradio as gr
from huggingface_hub import hf_hub_download
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
logger = logging.getLogger(__name__)
limitation = os.getenv("SYSTEM") == "spaces"
def get_net_g(model_path: str, version: str, device: str, hps):
# 当前版本模型 net_g
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, hps):
language_str = "JP"
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
ja_bert = bert
bert = torch.zeros(1024, len(phone))
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
emotion,
reference_audio=None,
skip_start=False,
skip_end=False,
style_text=None,
style_weight=0.7,
text_mode="Text",
):
# 2.2版本参数位置变了
# 2.1 参数新增 emotion reference_audio skip_start skip_end
version = hps.version if hasattr(hps, "version") else latest_version
language = "JP"
if isinstance(reference_audio, np.ndarray):
emo = get_clap_audio_feature(reference_audio, device)
else:
emo = get_clap_text_feature(emotion, device)
emo = torch.squeeze(emo, dim=1)
bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
style_text=style_text,
style_weight=style_weight,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
print(text)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
emo,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
emo,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
def create_tts_fn(net_g_ms, hps):
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
print(f"{text} | {speaker}")
sid = hps.data.spk2id[speaker]
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
if limitation:
max_len = 100
if len(text) > max_len:
return "Error: Text is too long", None
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=sid,
net_g_ms=net_g_ms,
hps=hps,
)
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
if __name__ == "__main__":
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
parser = argparse.ArgumentParser()
parser.add_argument("--share", default=False, help="make link public", action="store_true")
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
args = parser.parse_args()
if args.debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
models = []
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
# ✅ โหลดโมเดลทั้งหมดล่วงหน้า
for i, info in models_info.items():
if not info['enable']:
continue
name = info['name']
title = info['title']
link = info['link']
example = info['example']
print(f"🔄 Loading model: {name} from {link}")
config_path = hf_hub_download(repo_id=link, filename="config.json")
model_path = hf_hub_download(repo_id=link, filename=f"{name}.pth")
hps = utils.get_hparams_from_file(config_path)
net_g_ms = get_net_g(model_path, "v1", device, hps)
models.append((name, title, example, list(hps.data.spk2id.keys()), net_g_ms, create_tts_fn(net_g_ms, hps)))
# ✅ Gradio UI แบบพร้อมใช้กับ Spaces
with gr.Blocks(theme='NoCrypt/miku') as app:
gr.Markdown("## ✅ All models loaded successfully. Ready to use.")
with gr.Tabs():
for (name, title, example, speakers, net_g_ms, tts_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
f'</div>'
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example)
btn = gr.Button(value="Generate", variant="primary")
with gr.Row():
sp = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
with gr.Row():
sdpr = gr.Slider(label="SDP Ratio", minimum=0, maximum=1, step=0.1, value=0.2)
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6)
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.8)
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1)
with gr.Column():
o1 = gr.Textbox(label="Output Message")
o2 = gr.Audio(label="Output Audio")
btn.click(tts_fn, inputs=[input_text, sp, sdpr, ns, nsw, ls], outputs=[o1, o2])
app.queue().launch(share=args.share)
|