File size: 8,411 Bytes
760e479
 
 
 
 
 
 
 
c3d3e4f
 
 
bec57ee
 
b9de5dd
 
760e479
c3d3e4f
 
 
 
 
 
 
 
 
 
0fc12b1
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760e479
7709d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4f
 
 
 
 
 
7709d54
c3d3e4f
7709d54
 
c3d3e4f
7709d54
c3d3e4f
 
7709d54
c3d3e4f
 
 
7709d54
c3d3e4f
 
 
 
 
 
 
 
 
7709d54
 
 
 
 
 
 
 
 
 
 
c3d3e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9de5dd
c3d3e4f
 
b9de5dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4f
 
 
760e479
 
c3d3e4f
13f4210
760e479
 
 
 
 
41cc307
760e479
41cc307
c3d3e4f
41cc307
42dd197
41cc307
0fc12b1
760e479
6920d86
13f4210
c3d3e4f
13f4210
6920d86
13f4210
760e479
 
 
c3d3e4f
 
 
 
 
760e479
 
c3d3e4f
760e479
 
 
 
 
 
 
 
 
 
 
 
6920d86
8458ece
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import sys
import logging
import os
import json
import torch
import argparse
import commons
import utils
import gradio as gr
from huggingface_hub import hf_hub_download

from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
logger = logging.getLogger(__name__)
limitation = os.getenv("SYSTEM") == "spaces"


def get_net_g(model_path: str, version: str, device: str, hps):
    # 当前版本模型 net_g
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g

def get_text(text, hps):
    language_str = "JP"
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1

    bert = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    ja_bert = bert
    bert = torch.zeros(1024, len(phone))

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, phone, tone, language


def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    language,
    hps,
    net_g,
    device,
    emotion,
    reference_audio=None,
    skip_start=False,
    skip_end=False,
    style_text=None,
    style_weight=0.7,
    text_mode="Text",
):
    # 2.2版本参数位置变了
    # 2.1 参数新增 emotion reference_audio skip_start skip_end
    version = hps.version if hasattr(hps, "version") else latest_version
    language = "JP"
    if isinstance(reference_audio, np.ndarray):
        emo = get_clap_audio_feature(reference_audio, device)
    else:
        emo = get_clap_text_feature(emotion, device)
    emo = torch.squeeze(emo, dim=1)

    bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        style_text=style_text,
        style_weight=style_weight,
    )
    if skip_start:
        phones = phones[3:]
        tones = tones[3:]
        lang_ids = lang_ids[3:]
        bert = bert[:, 3:]
    if skip_end:
        phones = phones[:-2]
        tones = tones[:-2]
        lang_ids = lang_ids[:-2]
        bert = bert[:, :-2]
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        print(text)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            speakers,
            emo,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio


def create_tts_fn(net_g_ms, hps):
    def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
        print(f"{text} | {speaker}")
        sid = hps.data.spk2id[speaker]
        text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
        if limitation:
            max_len = 100
            if len(text) > max_len:
                return "Error: Text is too long", None
        audio = infer(
            text,
            sdp_ratio=sdp_ratio,
            noise_scale=noise_scale,
            noise_scale_w=noise_scale_w,
            length_scale=length_scale,
            sid=sid,
            net_g_ms=net_g_ms,
            hps=hps,
        )
        return "Success", (hps.data.sampling_rate, audio)
    return tts_fn


if __name__ == "__main__":
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )

    parser = argparse.ArgumentParser()
    parser.add_argument("--share", default=False, help="make link public", action="store_true")
    parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)

    models = []

    with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
        models_info = json.load(f)

    # ✅ โหลดโมเดลทั้งหมดล่วงหน้า
    for i, info in models_info.items():
        if not info['enable']:
            continue
        name = info['name']
        title = info['title']
        link = info['link']
        example = info['example']

        print(f"🔄 Loading model: {name} from {link}")
        config_path = hf_hub_download(repo_id=link, filename="config.json")
        model_path = hf_hub_download(repo_id=link, filename=f"{name}.pth")
        hps = utils.get_hparams_from_file(config_path)
        net_g_ms = get_net_g(model_path, "v1", device, hps)
        models.append((name, title, example, list(hps.data.spk2id.keys()), net_g_ms, create_tts_fn(net_g_ms, hps)))

    # ✅ Gradio UI แบบพร้อมใช้กับ Spaces
    with gr.Blocks(theme='NoCrypt/miku') as app:
        gr.Markdown("## ✅ All models loaded successfully. Ready to use.")

        with gr.Tabs():
            for (name, title, example, speakers, net_g_ms, tts_fn) in models:
                with gr.TabItem(name):
                    with gr.Row():
                        gr.Markdown(
                            '<div align="center">'
                            f'<a><strong>{title}</strong></a>'
                            f'</div>'
                        )
                    with gr.Row():
                        with gr.Column():
                            input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example)
                            btn = gr.Button(value="Generate", variant="primary")
                            with gr.Row():
                                sp = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
                            with gr.Row():
                                sdpr = gr.Slider(label="SDP Ratio", minimum=0, maximum=1, step=0.1, value=0.2)
                                ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6)
                                nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.8)
                                ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1)
                        with gr.Column():
                            o1 = gr.Textbox(label="Output Message")
                            o2 = gr.Audio(label="Output Audio")
                        btn.click(tts_fn, inputs=[input_text, sp, sdpr, ns, nsw, ls], outputs=[o1, o2])

    app.queue().launch(share=args.share)