csc525_retrieval_based_chatbot / chatbot_model.py
JoeArmani
summarization, reranker, environment setup, and response quality checker
f7b283c
raw
history blame
50.6 kB
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
import numpy as np
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from tqdm import tqdm
from pathlib import Path
import datetime
import faiss
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
from logger_config import config_logger
logger = config_logger(__name__)
@dataclass
class ChatbotConfig:
"""Configuration for the RetrievalChatbot."""
vocab_size: int = 30526 # DistilBERT vocab size
max_context_token_limit: int = 512
embedding_dim: int = 512 # Match DistilBERT's dimension
encoder_units: int = 256
num_attention_heads: int = 8
dropout_rate: float = 0.2
l2_reg_weight: float = 0.001
margin: float = 0.3
learning_rate: float = 0.001
min_text_length: int = 3
max_context_turns: int = 5
warmup_steps: int = 200
pretrained_model: str = 'distilbert-base-uncased'
dtype: str = 'float32'
freeze_embeddings: bool = False
# Additional configurations can be added here
def to_dict(self) -> dict:
"""Convert config to dictionary."""
return {k: str(v) if isinstance(v, Path) else v
for k, v in self.__dict__.items()}
@classmethod
def from_dict(cls, config_dict: dict) -> 'ChatbotConfig':
"""Create config from dictionary."""
return cls(**{k: v for k, v in config_dict.items()
if k in cls.__dataclass_fields__})
class EncoderModel(tf.keras.Model):
"""Dual encoder model with pretrained embeddings."""
def __init__(
self,
config: ChatbotConfig,
name: str = "encoder",
shared_weights: bool = False,
**kwargs
):
super().__init__(name=name, **kwargs)
self.config = config
self.shared_weights = shared_weights
# Load pretrained model
self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
# Freeze pretrained weights if specified
self.pretrained.distilbert.embeddings.trainable = False
for i, layer_module in enumerate(self.pretrained.distilbert.transformer.layer):
if i < 1: # freeze first layer
layer_module.trainable = False
else:
layer_module.trainable = True
# Pooling layer (Global Average Pooling)
self.pooler = tf.keras.layers.GlobalAveragePooling1D()
# Projection layer
self.projection = tf.keras.layers.Dense(
config.embedding_dim,
activation='tanh',
name="projection"
)
# Dropout and normalization
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.normalize = tf.keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1)
)
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
"""Forward pass."""
# Get pretrained embeddings
pretrained_outputs = self.pretrained(inputs, training=training)
x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]
# Apply pooling, projection, dropout, and normalization
x = self.pooler(x) # Shape: [batch_size, 768]
x = self.projection(x) # Shape: [batch_size, 512]
x = self.dropout(x, training=training) # Apply dropout
x = self.normalize(x) # Shape: [batch_size, 512]
return x
def get_config(self) -> dict:
"""Return the config of the model."""
config = super().get_config()
config.update({
"config": self.config.to_dict(),
"shared_weights": self.shared_weights,
"name": self.name
})
return config
class RetrievalChatbot(DeviceAwareModel):
"""Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
def __init__(self, config: ChatbotConfig, dialogues: List[dict] = [], device: str = None, strategy=None, reranker: Optional[CrossEncoderReranker] = None, summarizer: Optional[Summarizer] = None):
self.config = config
self.strategy = strategy
self.setup_device(device)
if reranker is None:
logger.info("Creating default CrossEncoderReranker...")
reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
self.reranker = reranker
if summarizer is None:
logger.info("Creating default Summarizer...")
summarizer = Summarizer(device=self.device)
self.summarizer = summarizer
# Configure XLA optimization if on GPU/TPU
if self.device in ["GPU", "TPU"]:
tf.config.optimizer.set_jit(True)
logger.info(f"XLA compilation enabled for {self.device}")
# Configure mixed precision for GPU/TPU
if self.device != "CPU":
policy = tf.keras.mixed_precision.Policy('mixed_float16')
tf.keras.mixed_precision.set_global_policy(policy)
logger.info("Mixed precision training enabled (float16)")
# Special tokens
self.special_tokens = {
"user": "<USER>",
"assistant": "<ASSISTANT>",
"context": "<CONTEXT>",
"sep": "<SEP>"
}
# Initialize tokenizer and add special tokens
self.tokenizer = AutoTokenizer.from_pretrained(config.pretrained_model)
self.tokenizer.add_special_tokens(
{'additional_special_tokens': list(self.special_tokens.values())}
)
# Build encoders within device strategy scope
if self.strategy:
with self.strategy.scope():
self._build_models()
else:
self._build_models()
# Initialize FAISS index
self._initialize_faiss()
# Precompute and index response embeddings
self._precompute_and_index_responses(dialogues)
# Initialize training history
self.history = {
"train_loss": [],
"val_loss": [],
"train_metrics": {},
"val_metrics": {}
}
def _build_models(self):
"""Initialize the shared encoder."""
logger.info("Building encoder model...")
# Shared encoder for both queries and responses
self.encoder = EncoderModel(
self.config,
name="shared_encoder",
)
# Resize token embeddings after adding special tokens
new_vocab_size = len(self.tokenizer)
self.encoder.pretrained.resize_token_embeddings(new_vocab_size)
logger.info(f"Token embeddings resized to: {new_vocab_size}")
# Debug embeddings attributes
logger.info("Inspecting embeddings attributes:")
for attr in dir(self.encoder.pretrained.distilbert.embeddings):
if not attr.startswith('_'):
logger.info(f" {attr}")
# Try different ways to get embedding dimension
try:
# First try: from config
embedding_dim = self.encoder.pretrained.config.dim
logger.info("Got embedding dim from config")
except AttributeError:
try:
# Second try: from word embeddings
embedding_dim = self.encoder.pretrained.distilbert.embeddings.word_embeddings.embedding_dim
logger.info("Got embedding dim from word embeddings")
except AttributeError:
try:
# Third try: from embeddings module
embedding_dim = self.encoder.pretrained.distilbert.embeddings.embedding_dim
logger.info("Got embedding dim from embeddings module")
except AttributeError:
# Fallback to config value
embedding_dim = self.config.embedding_dim
logger.info("Using config embedding dim")
vocab_size = len(self.tokenizer)
logger.info(f"Encoder Embedding Dimension: {embedding_dim}")
logger.info(f"Encoder Embedding Vocabulary Size: {vocab_size}")
if vocab_size >= embedding_dim:
logger.info("Encoder model built and embeddings resized successfully.")
else:
logger.error("Vocabulary size is less than embedding dimension.")
raise ValueError("Vocabulary size is less than embedding dimension.")
def _initialize_faiss(self):
"""Initialize FAISS index based on available resources."""
logger.info("Initializing FAISS index...")
# Determine if GPU FAISS is available
try:
res = faiss.StandardGpuResources()
self.faiss_gpu = True
logger.info("FAISS GPU resources initialized.")
except Exception as e:
self.faiss_gpu = False
logger.info("FAISS GPU resources not available. Using FAISS CPU.")
# Initialize FAISS index for Inner Product (for cosine similarity)
if self.faiss_gpu:
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
else:
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
logger.info("FAISS index initialized.")
def verify_faiss_index(self):
"""Verify that FAISS index matches the response pool."""
indexed_size = self.index.ntotal
pool_size = len(self.response_pool)
logger.info(f"FAISS index size: {indexed_size}")
logger.info(f"Response pool size: {pool_size}")
if indexed_size != pool_size:
logger.warning("Mismatch between FAISS index size and response pool size.")
else:
logger.info("FAISS index correctly matches the response pool.")
def _precompute_and_index_responses(self, dialogues: List[dict]):
"""Precompute embeddings for all responses and index them using FAISS."""
logger.info("Precomputing response embeddings and indexing with FAISS...")
# Use tqdm for collecting responses
responses = []
for dialogue in tqdm(dialogues, desc="Collecting assistant responses"):
turns = dialogue.get('turns', [])
for turn in turns:
if turn.get('speaker') == 'assistant' and 'text' in turn:
responses.append(turn['text'].strip())
# Remove duplicates
unique_responses = list(set(responses))
logger.info(f"Found {len(unique_responses)} unique responses.")
# Encode responses
logger.info("Encoding unique responses")
response_embeddings = self.encode_responses(unique_responses)
response_embeddings = response_embeddings.numpy()
# Ensure float32
if response_embeddings.dtype != np.float32:
response_embeddings = response_embeddings.astype('float32')
# Ensure the array is contiguous in memory
if not response_embeddings.flags['C_CONTIGUOUS']:
logger.info("Making embeddings contiguous in memory.")
response_embeddings = np.ascontiguousarray(response_embeddings)
# Normalize embeddings for cosine similarity
logger.info("Normalizing embeddings with FAISS.")
faiss.normalize_L2(response_embeddings)
# Add to FAISS index
logger.info("Adding embeddings to FAISS index...")
self.index.add(response_embeddings)
logger.info(f"Indexed {self.index.ntotal} responses.")
# Store responses and embeddings
self.response_pool = unique_responses
self.response_embeddings = response_embeddings
logger.info("Precomputation and indexing completed.")
def encode_responses(
self,
responses: List[str],
batch_size: int = 64
) -> tf.Tensor:
"""
Encodes a list of responses into embeddings, using chunked/batched processing
to avoid running out of memory when there are many responses.
Args:
responses (List[str]): The list of response texts to encode.
batch_size (int): How many responses to encode per chunk.
Adjust based on available GPU/CPU memory.
Returns:
tf.Tensor: Tensor of shape (N, emb_dim) with all response embeddings.
"""
# Accumulate embeddings in a list and concatenate at the end
all_embeddings = []
# Process the responses in chunks of 'batch_size'
for start_idx in range(0, len(responses), batch_size):
end_idx = start_idx + batch_size
batch_texts = responses[start_idx:end_idx]
# Tokenize the current batch
encodings = self.tokenizer(
batch_texts,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf',
)
# Run the encoder forward pass
input_ids = encodings['input_ids']
embeddings_batch = self.encoder(input_ids, training=False)
# Cast to float32 if needed
if embeddings_batch.dtype != tf.float32:
embeddings_batch = tf.cast(embeddings_batch, tf.float32)
# Collect
all_embeddings.append(embeddings_batch)
# Concatenate all batch embeddings along axis=0
if len(all_embeddings) == 1:
# Only one batch
final_embeddings = all_embeddings[0]
else:
# Multiple batches, concatenate
final_embeddings = tf.concat(all_embeddings, axis=0)
return final_embeddings
def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> tf.Tensor:
"""Encode a query with optional conversation context."""
# Prepare query with context
if context:
context_str = ' '.join([
f"{self.special_tokens['user']} {q} "
f"{self.special_tokens['assistant']} {r}"
for q, r in context[-self.config.max_context_turns:]
])
query = f"{context_str} {self.special_tokens['user']} {query}"
else:
query = f"{self.special_tokens['user']} {query}"
# Tokenize and encode
encodings = self.tokenizer(
[query],
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
input_ids = encodings['input_ids']
# Verify token IDs
max_id = tf.reduce_max(input_ids).numpy()
new_vocab_size = len(self.tokenizer)
if max_id >= new_vocab_size:
logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
raise ValueError("Token ID exceeds vocabulary size.")
# Get embeddings from the shared encoder
return self.encoder(input_ids, training=False)
def retrieve_responses_cross_encoder(
self,
query: str,
top_k: int,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
summarize_threshold: int = 512 # Summarize over 512 tokens
) -> List[Tuple[str, float]]:
"""
Retrieve top-k from FAISS, then re-rank them with a cross-encoder.
Optionally summarize the user query if it's too long.
"""
if reranker is None:
reranker = self.reranker
if summarizer is None:
summarizer = self.summarizer
# Optional summarization
if summarizer and len(query.split()) > summarize_threshold:
logger.info(f"Query is long. Summarizing before cross-encoder. Original length: {len(query.split())}")
query = summarizer.summarize_text(query)
logger.info(f"Summarized query: {query}")
# 2) Dense retrieval
dense_topk = self.retrieve_responses_faiss(query, top_k=top_k) # [(resp, dense_score), ...]
if not dense_topk:
return []
# 3) Cross-encoder rerank
candidate_texts = [pair[0] for pair in dense_topk]
cross_scores = reranker.rerank(query, candidate_texts, max_length=256)
# Combine
combined = [(text, score) for (text, _), score in zip(dense_topk, cross_scores)]
# Sort descending by cross-encoder score
combined.sort(key=lambda x: x[1], reverse=True)
return combined
def retrieve_responses_faiss(self, query: str, top_k: int = 5) -> List[Tuple[str, float]]:
"""Retrieve top-k responses using FAISS."""
# Encode the query
q_emb = self.encode_query(query) # Shape: [1, embedding_dim]
q_emb_np = q_emb.numpy().astype('float32') # Ensure type matches FAISS requirements
# Normalize the query embedding for cosine similarity
faiss.normalize_L2(q_emb_np)
# Search the FAISS index
distances, indices = self.index.search(q_emb_np, top_k)
# Map indices to responses and distances to similarities
top_responses = []
for i, idx in enumerate(indices[0]):
if idx < len(self.response_pool):
top_responses.append((self.response_pool[idx], float(distances[0][i])))
else:
logger.warning(f"FAISS returned invalid index {idx}. Skipping.")
return top_responses
def save_models(self, save_dir: Union[str, Path]):
"""Save models and configuration."""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(save_dir / "config.json", "w") as f:
json.dump(self.config.to_dict(), f, indent=2)
# Save models
self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
# Save tokenizer
self.tokenizer.save_pretrained(save_dir / "tokenizer")
logger.info(f"Models and tokenizer saved to {save_dir}.")
@classmethod
def load_models(cls, load_dir: Union[str, Path]) -> 'RetrievalChatbot':
"""Load saved models and configuration."""
load_dir = Path(load_dir)
# Load config
with open(load_dir / "config.json", "r") as f:
config = ChatbotConfig.from_dict(json.load(f))
# Initialize chatbot
chatbot = cls(config)
# Load models
chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
load_dir / "shared_encoder",
config=config
)
# Load tokenizer
chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
logger.info(f"Models and tokenizer loaded from {load_dir}.")
return chatbot
@staticmethod
def load_training_data(data_path: Union[str, Path], debug_samples: Optional[int] = None) -> List[dict]:
"""
Load training data from a JSON file.
Args:
data_path (Union[str, Path]): Path to the JSON file containing dialogues.
debug_samples (Optional[int]): Number of samples to load for debugging.
Returns:
List[dict]: List of dialogue dictionaries.
"""
logger.info(f"Loading training data from {data_path}...")
data_path = Path(data_path)
if not data_path.exists():
logger.error(f"Data file {data_path} does not exist.")
return []
with open(data_path, 'r', encoding='utf-8') as f:
dialogues = json.load(f)
if debug_samples is not None:
dialogues = dialogues[:debug_samples]
logger.info(f"Debug mode: Limited to {debug_samples} dialogues")
logger.info(f"Loaded {len(dialogues)} dialogues.")
return dialogues
def prepare_dataset(
self,
dialogues: List[dict],
neg_samples: int = 1,
debug_samples: int = None
) -> Tuple[tf.Tensor, tf.Tensor]:
"""
Prepares dataset for multiple-negatives ranking,
but also appends 'hard negative' pairs for each query.
We'll generate:
- (query, positive) as usual
- (query, negative) for each query, using FAISS top-1 approx. negative.
Then, in-batch training sees them as 'two different positives'
for the same query, forcing the model to discriminate them.
"""
logger.info("Preparing in-batch dataset with hard negatives...")
queries, positives = [], []
# Assemble (q, p)
for dialogue in dialogues:
turns = dialogue.get('turns', [])
for i in range(len(turns) - 1):
current_turn = turns[i]
next_turn = turns[i+1]
if (current_turn.get('speaker') == 'user'
and next_turn.get('speaker') == 'assistant'
and 'text' in current_turn
and 'text' in next_turn):
query_text = current_turn['text'].strip()
pos_text = next_turn['text'].strip()
queries.append(query_text)
positives.append(pos_text)
# Debug slicing
if debug_samples is not None:
queries = queries[:debug_samples]
positives = positives[:debug_samples]
logger.info(f"Debug mode: limited to {debug_samples} pairs.")
logger.info(f"Prepared {len(queries)} (query, positive) pairs initially.")
# Find a hard negative from FAISS for each (q, p)
# Create a second 'positive' row => (q, negative). In-batch, it's seen as a different 'positive' row, but is a hard negative.
augmented_queries = []
augmented_positives = []
for q_text, p_text in zip(queries, positives):
neg_texts = self._find_hard_negative(q_text, p_text, top_k=5, neg_samples=neg_samples)
for neg_text in neg_texts:
augmented_queries.append(q_text)
augmented_positives.append(neg_text)
logger.info(f"Found hard negatives for {len(augmented_queries)} queries.")
# Combine them into a single big list -> Original pairs: (q, p) & Hard neg pairs: (q, n)
final_queries = queries + augmented_queries
final_positives = positives + augmented_positives
logger.info(f"Total dataset size after adding hard neg: {len(final_queries)}")
# Tokenize
encoded_queries = self.tokenizer(
final_queries,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
encoded_positives = self.tokenizer(
final_positives,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
q_tensor = encoded_queries['input_ids']
p_tensor = encoded_positives['input_ids']
logger.info("Tokenized and padded sequences for in-batch training + hard negatives.")
return q_tensor, p_tensor
def _find_hard_negative(
self,
query_text: str,
positive_text: str,
top_k: int = 5,
neg_samples: int = 1
) -> List[str]:
"""
Return up to `neg_samples` unique negatives from top_k FAISS results,
excluding the known positive_text.
"""
# Encode the query to get the embedding
query_emb = self.encode_query(query_text)
q_emb_np = query_emb.numpy().astype('float32')
# Normalize for cosine similarity
faiss.normalize_L2(q_emb_np)
# Search in FAISS
distances, indices = self.index.search(q_emb_np, top_k)
# Exclude the actual positive from these results
hard_negatives = []
for idx in indices[0]:
if idx < len(self.response_pool):
candidate = self.response_pool[idx].strip()
if candidate != positive_text.strip():
hard_negatives.append(candidate)
if len(hard_negatives) == neg_samples:
break
return hard_negatives
def train(
self,
q_pad: tf.Tensor,
p_pad: tf.Tensor,
epochs: int = 20,
batch_size: int = 16,
validation_split: float = 0.2,
checkpoint_dir: str = "checkpoints/",
use_lr_schedule: bool = True,
peak_lr: float = 2e-5,
warmup_steps_ratio: float = 0.1,
early_stopping_patience: int = 3,
min_delta: float = 1e-4,
accum_steps: int = 2 # Gradient accumulation steps
):
dataset_size = tf.shape(q_pad)[0].numpy()
val_size = int(dataset_size * validation_split)
train_size = dataset_size - val_size
logger.info(f"Total samples: {dataset_size}")
logger.info(f"Training samples: {train_size}")
logger.info(f"Validation samples: {val_size}")
steps_per_epoch = train_size // batch_size
if train_size % batch_size != 0:
steps_per_epoch += 1
total_steps = steps_per_epoch * epochs
logger.info(f"Total training steps (approx): {total_steps}")
# 1) Set up LR schedule or fixed LR
if use_lr_schedule:
warmup_steps = int(total_steps * warmup_steps_ratio)
lr_schedule = self._get_lr_schedule(
total_steps=total_steps,
peak_lr=peak_lr,
warmup_steps=warmup_steps
)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
logger.info("Using custom learning rate schedule.")
else:
self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
logger.info("Using fixed learning rate.")
# 2) Prepare data splits
train_q = q_pad[:train_size]
train_p = p_pad[:train_size]
val_q = q_pad[train_size:]
val_p = p_pad[train_size:]
train_dataset = (tf.data.Dataset.from_tensor_slices((train_q, train_p))
.shuffle(4096)
.batch(batch_size)
.prefetch(tf.data.AUTOTUNE))
val_dataset = (tf.data.Dataset.from_tensor_slices((val_q, val_p))
.batch(batch_size)
.prefetch(tf.data.AUTOTUNE))
# 3) Checkpoint + manager
checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
# 4) TensorBoard setup
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
log_dir.mkdir(parents=True, exist_ok=True)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = str(log_dir / f"train_{current_time}")
val_log_dir = str(log_dir / f"val_{current_time}")
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
logger.info(f"TensorBoard logs will be saved in {log_dir}")
# 5) Early stopping
best_val_loss = float("inf")
epochs_no_improve = 0
logger.info("Beginning training loop...")
global_step = 0
# Prepare zero-initialized accumulators for your trainable variables
# We'll accumulate gradients across mini-batches, then apply them every accum_steps.
train_vars = self.encoder.pretrained.trainable_variables
accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]
from tqdm import tqdm
for epoch in range(1, epochs + 1):
logger.info(f"\n=== Epoch {epoch}/{epochs} ===")
epoch_loss_avg = tf.keras.metrics.Mean()
step_in_epoch = 0
with tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}") as pbar:
for (q_batch, p_batch) in train_dataset:
step_in_epoch += 1
global_step += 1
with tf.GradientTape() as tape:
q_enc = self.encoder(q_batch, training=True)
p_enc = self.encoder(p_batch, training=True)
sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
bsz = tf.shape(q_enc)[0]
labels = tf.range(bsz, dtype=tf.int32)
loss_value = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=sim_matrix
)
loss_value = tf.reduce_mean(loss_value)
gradients = tape.gradient(loss_value, train_vars)
# -- Accumulate gradients --
for i, grad in enumerate(gradients):
if grad is not None:
accum_grads[i] += tf.cast(grad, tf.float32)
epoch_loss_avg(loss_value)
# -- Apply gradients every 'accum_steps' mini-batches --
if (step_in_epoch % accum_steps) == 0:
# Scale by 1/accum_steps so that each accumulation cycle
# is effectively the same as one “normal” update
for i in range(len(accum_grads)):
accum_grads[i] /= accum_steps
self.optimizer.apply_gradients(
[(accum_grads[i], train_vars[i]) for i in range(len(accum_grads))]
)
# Reset the accumulator
accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]
# Logging / tqdm updates
if use_lr_schedule:
# measure current LR
lr = self.optimizer.learning_rate
if isinstance(lr, tf.keras.optimizers.schedules.LearningRateSchedule):
current_step = tf.cast(self.optimizer.iterations, tf.float32)
current_lr = lr(current_step)
else:
current_lr = lr
current_lr_value = float(current_lr.numpy())
else:
current_lr_value = float(self.optimizer.learning_rate.numpy())
pbar.update(1)
pbar.set_postfix({
"loss": f"{loss_value.numpy():.4f}",
"lr": f"{current_lr_value:.2e}"
})
# TensorBoard logging omitted for brevity...
# -- Handle leftover partial accumulation at epoch end --
leftover = (step_in_epoch % accum_steps)
if leftover != 0:
logger.info(f"Applying leftover accum_grads for partial batch group (size={leftover}).")
# If you want each leftover batch to contribute proportionally:
# multiply by leftover/accum_steps (this ensures leftover
# steps have the same "average" effect as a full accumulation cycle)
for i in range(len(accum_grads)):
accum_grads[i] *= float(leftover) / float(accum_steps)
self.optimizer.apply_gradients(
[(accum_grads[i], train_vars[i]) for i in range(len(accum_grads))]
)
accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]
# Validation
val_loss_avg = tf.keras.metrics.Mean()
for q_val, p_val in val_dataset:
q_enc = self.encoder(q_val, training=False)
p_enc = self.encoder(p_val, training=False)
sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
bs_val = tf.shape(q_enc)[0]
labels_val = tf.range(bs_val, dtype=tf.int32)
loss_val = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels_val,
logits=sim_matrix
)
val_loss_avg(tf.reduce_mean(loss_val))
train_loss = epoch_loss_avg.result().numpy()
val_loss = val_loss_avg.result().numpy()
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# TensorBoard: validation loss
with val_summary_writer.as_default():
tf.summary.scalar("val_loss", val_loss, step=epoch)
# Save checkpoint
manager.save()
# Update history
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
self.history.setdefault('learning_rate', []).append(float(current_lr_value))
# Early stopping
if val_loss < best_val_loss - min_delta:
best_val_loss = val_loss
epochs_no_improve = 0
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
else:
epochs_no_improve += 1
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
if epochs_no_improve >= early_stopping_patience:
logger.info("Early stopping triggered.")
break
logger.info("In-batch training completed!")
def _get_lr_schedule(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
) -> tf.keras.optimizers.schedules.LearningRateSchedule:
"""Create a custom learning rate schedule with warmup and cosine decay."""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
):
super().__init__()
self.total_steps = tf.cast(total_steps, tf.float32)
self.peak_lr = tf.cast(peak_lr, tf.float32)
# Adjust warmup_steps to not exceed half of total_steps
adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
# Calculate and store constants
self.initial_lr = self.peak_lr * 0.1 # Start at 10% of peak
self.min_lr = self.peak_lr * 0.01 # Minimum 1% of peak
logger.info(f"Learning rate schedule initialized:")
logger.info(f" Initial LR: {float(self.initial_lr):.6f}")
logger.info(f" Peak LR: {float(self.peak_lr):.6f}")
logger.info(f" Min LR: {float(self.min_lr):.6f}")
logger.info(f" Warmup steps: {int(self.warmup_steps)}")
logger.info(f" Total steps: {int(self.total_steps)}")
def __call__(self, step):
step = tf.cast(step, tf.float32)
# Warmup phase
warmup_factor = tf.minimum(1.0, step / self.warmup_steps)
warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
# Decay phase
decay_steps = tf.maximum(1.0, self.total_steps - self.warmup_steps)
decay_factor = (step - self.warmup_steps) / decay_steps
decay_factor = tf.minimum(tf.maximum(0.0, decay_factor), 1.0) # Clip to [0,1]
cosine_decay = 0.5 * (1.0 + tf.cos(tf.constant(math.pi) * decay_factor))
decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
# Choose between warmup and decay
final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
# Ensure learning rate is valid
final_lr = tf.maximum(self.min_lr, final_lr)
final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
return final_lr
def get_config(self):
return {
"total_steps": self.total_steps,
"peak_lr": self.peak_lr,
"warmup_steps": self.warmup_steps,
}
return CustomSchedule(total_steps, peak_lr, warmup_steps)
def _cosine_similarity(self, emb1: np.ndarray, emb2: np.ndarray) -> np.ndarray:
"""Compute cosine similarity between two numpy arrays."""
normalized_emb1 = emb1 / np.linalg.norm(emb1, axis=1, keepdims=True)
normalized_emb2 = emb2 / np.linalg.norm(emb2, axis=1, keepdims=True)
return np.dot(normalized_emb1, normalized_emb2.T)
def chat(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]] = None,
quality_checker: Optional['ResponseQualityChecker'] = None,
top_k: int = 5,
) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
"""
Example chat method that always uses cross-encoder re-ranking
if self.reranker is available.
"""
@self.run_on_device
def get_response(self_arg, query_arg): # Add parameters that match decorator's expectations
# 1) Build conversation context string
conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
# 2) Retrieve + cross-encoder re-rank
results = self_arg.retrieve_responses_cross_encoder(
query=conversation_str,
top_k=top_k,
reranker=self_arg.reranker,
summarizer=self_arg.summarizer,
summarize_threshold=512
)
# 3) Handle empty or confidence
if not results:
return (
"I'm sorry, but I couldn't find a relevant response.",
[],
{}
)
if quality_checker:
metrics = quality_checker.check_response_quality(query_arg, results)
if not metrics.get('is_confident', False):
return (
"I need more information to provide a good answer. Could you please clarify?",
results,
metrics
)
return results[0][0], results, metrics
return results[0][0], results, {}
return get_response(self, query)
def _build_conversation_context(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]]
) -> str:
"""Build conversation context with better memory management."""
if not conversation_history:
return f"{self.special_tokens['user']} {query}"
conversation_parts = []
for user_txt, assistant_txt in conversation_history:
conversation_parts.extend([
f"{self.special_tokens['user']} {user_txt}",
f"{self.special_tokens['assistant']} {assistant_txt}"
])
conversation_parts.append(f"{self.special_tokens['user']} {query}")
return "\n".join(conversation_parts)
# def prepare_dataset(
# self,
# dialogues: List[dict],
# debug_samples: int = None
# ) -> Tuple[tf.Tensor, tf.Tensor]:
# """
# Prepares dataset for in-batch negatives:
# Only returns (query, positive) pairs.
# """
# logger.info("Preparing in-batch dataset...")
# queries, positives = [], []
# for dialogue in dialogues:
# turns = dialogue.get('turns', [])
# for i in range(len(turns) - 1):
# current_turn = turns[i]
# next_turn = turns[i+1]
# if (current_turn.get('speaker') == 'user' and
# next_turn.get('speaker') == 'assistant' and
# 'text' in current_turn and
# 'text' in next_turn):
# query = current_turn['text'].strip()
# positive = next_turn['text'].strip()
# queries.append(query)
# positives.append(positive)
# # Optional debug slicing
# if debug_samples is not None:
# queries = queries[:debug_samples]
# positives = positives[:debug_samples]
# logger.info(f"Debug mode: limited to {debug_samples} pairs.")
# logger.info(f"Prepared {len(queries)} (query, positive) pairs.")
# # Tokenize queries
# encoded_queries = self.tokenizer(
# queries,
# padding='max_length',
# truncation=True,
# max_length=self.config.max_sequence_length,
# return_tensors='tf'
# )
# # Tokenize positives
# encoded_positives = self.tokenizer(
# positives,
# padding='max_length',
# truncation=True,
# max_length=self.config.max_sequence_length,
# return_tensors='tf'
# )
# q_tensor = encoded_queries['input_ids']
# p_tensor = encoded_positives['input_ids']
# logger.info("Tokenized and padded sequences for in-batch training.")
# return q_tensor, p_tensor
# def train(
# self,
# q_pad: tf.Tensor,
# p_pad: tf.Tensor,
# epochs: int = 20,
# batch_size: int = 16,
# validation_split: float = 0.2,
# checkpoint_dir: str = "checkpoints/",
# use_lr_schedule: bool = True,
# peak_lr: float = 2e-5,
# warmup_steps_ratio: float = 0.1,
# early_stopping_patience: int = 3,
# min_delta: float = 1e-4
# ):
# dataset_size = tf.shape(q_pad)[0].numpy()
# val_size = int(dataset_size * validation_split)
# train_size = dataset_size - val_size
# logger.info(f"Total samples: {dataset_size}")
# logger.info(f"Training samples: {train_size}")
# logger.info(f"Validation samples: {val_size}")
# steps_per_epoch = train_size // batch_size
# if train_size % batch_size != 0:
# steps_per_epoch += 1
# total_steps = steps_per_epoch * epochs
# logger.info(f"Total training steps (approx): {total_steps}")
# # 1) Set up LR schedule or fixed LR
# if use_lr_schedule:
# warmup_steps = int(total_steps * warmup_steps_ratio)
# lr_schedule = self._get_lr_schedule(
# total_steps=total_steps,
# peak_lr=peak_lr,
# warmup_steps=warmup_steps
# )
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
# logger.info("Using custom learning rate schedule.")
# else:
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
# logger.info("Using fixed learning rate.")
# # 2) Prepare data splits
# train_q = q_pad[:train_size]
# train_p = p_pad[:train_size]
# val_q = q_pad[train_size:]
# val_p = p_pad[train_size:]
# train_dataset = tf.data.Dataset.from_tensor_slices((train_q, train_p))
# train_dataset = train_dataset.shuffle(buffer_size=4096).batch(batch_size)
# val_dataset = tf.data.Dataset.from_tensor_slices((val_q, val_p))
# val_dataset = val_dataset.batch(batch_size)
# # 3) Checkpoint + manager
# checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
# manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
# # 4) TensorBoard setup
# log_dir = Path(checkpoint_dir) / "tensorboard_logs"
# log_dir.mkdir(parents=True, exist_ok=True)
# current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# train_log_dir = str(log_dir / f"train_{current_time}")
# val_log_dir = str(log_dir / f"val_{current_time}")
# train_summary_writer = tf.summary.create_file_writer(train_log_dir)
# val_summary_writer = tf.summary.create_file_writer(val_log_dir)
# logger.info(f"TensorBoard logs will be saved in {log_dir}")
# # 5) Early stopping
# best_val_loss = float("inf")
# epochs_no_improve = 0
# logger.info("Beginning training loop...")
# global_step = 0
# from tqdm import tqdm
# for epoch in range(1, epochs + 1):
# logger.info(f"\n=== Epoch {epoch}/{epochs} ===")
# epoch_loss_avg = tf.keras.metrics.Mean()
# # Training loop
# with tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}") as pbar:
# for (q_batch, p_batch) in train_dataset:
# global_step += 1
# # Train step
# batch_loss = self._train_step(q_batch, p_batch)
# epoch_loss_avg(batch_loss)
# # Get current LR
# if use_lr_schedule:
# lr = self.optimizer.learning_rate
# if isinstance(lr, tf.keras.optimizers.schedules.LearningRateSchedule):
# # Get the current step
# current_step = tf.cast(self.optimizer.iterations, tf.float32)
# # Compute the current learning rate
# current_lr = lr(current_step)
# else:
# # If learning_rate is not a schedule, use it directly
# current_lr = lr
# # Convert to float for logging
# current_lr_value = float(current_lr.numpy())
# else:
# # If using fixed learning rate
# current_lr_value = float(self.optimizer.learning_rate.numpy())
# # Update tqdm
# pbar.update(1)
# pbar.set_postfix({
# "loss": f"{batch_loss.numpy():.4f}",
# "lr": f"{current_lr_value:.2e}"
# })
# # TensorBoard: log train metrics per step
# with train_summary_writer.as_default():
# tf.summary.scalar("loss", batch_loss, step=global_step)
# tf.summary.scalar("learning_rate", current_lr_value, step=global_step)
# # Validation
# val_loss_avg = tf.keras.metrics.Mean()
# for q_val, p_val in val_dataset:
# q_enc = self.encoder(q_val, training=False)
# p_enc = self.encoder(p_val, training=False)
# sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
# bs_val = tf.shape(q_enc)[0]
# labels_val = tf.range(bs_val, dtype=tf.int32)
# loss_val = tf.nn.sparse_softmax_cross_entropy_with_logits(
# labels=labels_val,
# logits=sim_matrix
# )
# val_loss_avg(tf.reduce_mean(loss_val))
# train_loss = epoch_loss_avg.result().numpy()
# val_loss = val_loss_avg.result().numpy()
# logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# # TensorBoard: validation loss
# with val_summary_writer.as_default():
# tf.summary.scalar("val_loss", val_loss, step=epoch)
# # Save checkpoint
# manager.save()
# # Update history
# self.history['train_loss'].append(train_loss)
# self.history['val_loss'].append(val_loss)
# self.history.setdefault('learning_rate', []).append(float(current_lr_value))
# # Early stopping
# if val_loss < best_val_loss - min_delta:
# best_val_loss = val_loss
# epochs_no_improve = 0
# logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
# else:
# epochs_no_improve += 1
# logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
# if epochs_no_improve >= early_stopping_patience:
# logger.info("Early stopping triggered.")
# break
# logger.info("In-batch training completed!")
# @tf.function
# def _train_step(self, q_batch, p_batch):
# """
# Single training step using in-batch negatives.
# q_batch: (batch_size, seq_len) int32 input_ids for queries
# p_batch: (batch_size, seq_len) int32 input_ids for positives
# """
# with tf.GradientTape() as tape:
# # Encode queries and positives
# q_enc = self.encoder(q_batch, training=True) # [B, emb_dim]
# p_enc = self.encoder(p_batch, training=True) # [B, emb_dim]
# # Compute similarity matrix: (B, B) = q_enc * p_enc^T
# # If embeddings are L2-normalized, this is cosine similarity
# sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True) # [B, B]
# # Labels are just the diagonal indices
# batch_size = tf.shape(q_enc)[0]
# labels = tf.range(batch_size, dtype=tf.int32) # [0..B-1]
# # Softmax cross-entropy
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
# labels=labels,
# logits=sim_matrix
# )
# loss = tf.reduce_mean(loss)
# # Compute gradients for the pretrained DistilBERT variables only
# train_vars = self.encoder.pretrained.trainable_variables
# gradients = tape.gradient(loss, train_vars)
# # Remove any None grads (in case some layers are frozen)
# grads_and_vars = [(g, v) for g, v in zip(gradients, train_vars) if g is not None]
# if grads_and_vars:
# self.optimizer.apply_gradients(grads_and_vars)
# return loss