File size: 50,593 Bytes
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
import numpy as np
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from tqdm import tqdm
from pathlib import Path
import datetime       
import faiss
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
from logger_config import config_logger
logger = config_logger(__name__)

@dataclass
class ChatbotConfig:
    """Configuration for the RetrievalChatbot."""
    vocab_size: int = 30526  # DistilBERT vocab size
    max_context_token_limit: int = 512
    embedding_dim: int = 512  # Match DistilBERT's dimension
    encoder_units: int = 256
    num_attention_heads: int = 8
    dropout_rate: float = 0.2
    l2_reg_weight: float = 0.001
    margin: float = 0.3
    learning_rate: float = 0.001
    min_text_length: int = 3
    max_context_turns: int = 5
    warmup_steps: int = 200
    pretrained_model: str = 'distilbert-base-uncased'
    dtype: str = 'float32'
    freeze_embeddings: bool = False
    # Additional configurations can be added here

    def to_dict(self) -> dict:
        """Convert config to dictionary."""
        return {k: str(v) if isinstance(v, Path) else v 
                for k, v in self.__dict__.items()}

    @classmethod
    def from_dict(cls, config_dict: dict) -> 'ChatbotConfig':
        """Create config from dictionary."""
        return cls(**{k: v for k, v in config_dict.items() 
                     if k in cls.__dataclass_fields__})

class EncoderModel(tf.keras.Model):
    """Dual encoder model with pretrained embeddings."""
    def __init__(
        self,
        config: ChatbotConfig,
        name: str = "encoder",
        shared_weights: bool = False,
        **kwargs
    ):
        super().__init__(name=name, **kwargs)
        self.config = config
        self.shared_weights = shared_weights

        # Load pretrained model
        self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
        
        # Freeze pretrained weights if specified
        self.pretrained.distilbert.embeddings.trainable = False
        for i, layer_module in enumerate(self.pretrained.distilbert.transformer.layer):
            if i < 1:  # freeze first layer
                layer_module.trainable = False
            else:
                layer_module.trainable = True

        # Pooling layer (Global Average Pooling)
        self.pooler = tf.keras.layers.GlobalAveragePooling1D()
        
        # Projection layer
        self.projection = tf.keras.layers.Dense(
            config.embedding_dim,
            activation='tanh',
            name="projection"
        )

        # Dropout and normalization
        self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
        self.normalize = tf.keras.layers.Lambda(
            lambda x: tf.nn.l2_normalize(x, axis=1)
        )

    def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
        """Forward pass."""
        # Get pretrained embeddings
        pretrained_outputs = self.pretrained(inputs, training=training)
        x = pretrained_outputs.last_hidden_state  # Shape: [batch_size, seq_len, embedding_dim]

        # Apply pooling, projection, dropout, and normalization
        x = self.pooler(x)  # Shape: [batch_size, 768]
        x = self.projection(x) # Shape: [batch_size, 512]
        x = self.dropout(x, training=training) # Apply dropout
        x = self.normalize(x)  # Shape: [batch_size, 512]

        return x

    def get_config(self) -> dict:
        """Return the config of the model."""
        config = super().get_config()
        config.update({
            "config": self.config.to_dict(),
            "shared_weights": self.shared_weights,
            "name": self.name
        })
        return config
        
class RetrievalChatbot(DeviceAwareModel):
    """Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
    def __init__(self, config: ChatbotConfig, dialogues: List[dict] = [], device: str = None, strategy=None, reranker: Optional[CrossEncoderReranker] = None, summarizer: Optional[Summarizer] = None):
        self.config = config
        self.strategy = strategy
        self.setup_device(device)
        
        if reranker is None:
            logger.info("Creating default CrossEncoderReranker...")
            reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
        self.reranker = reranker
        
        if summarizer is None:
            logger.info("Creating default Summarizer...")
            summarizer = Summarizer(device=self.device)
        self.summarizer = summarizer
        
        # Configure XLA optimization if on GPU/TPU
        if self.device in ["GPU", "TPU"]:
            tf.config.optimizer.set_jit(True)
            logger.info(f"XLA compilation enabled for {self.device}")
        
        # Configure mixed precision for GPU/TPU
        if self.device != "CPU":
            policy = tf.keras.mixed_precision.Policy('mixed_float16')
            tf.keras.mixed_precision.set_global_policy(policy)
            logger.info("Mixed precision training enabled (float16)")
        
        # Special tokens
        self.special_tokens = {
            "user": "<USER>",
            "assistant": "<ASSISTANT>",
            "context": "<CONTEXT>",
            "sep": "<SEP>"
        }
        
        # Initialize tokenizer and add special tokens
        self.tokenizer = AutoTokenizer.from_pretrained(config.pretrained_model)
        self.tokenizer.add_special_tokens(
            {'additional_special_tokens': list(self.special_tokens.values())}
        )
        
        # Build encoders within device strategy scope
        if self.strategy:
            with self.strategy.scope():
                self._build_models()
        else:
            self._build_models()
        
        # Initialize FAISS index
        self._initialize_faiss()
        
        # Precompute and index response embeddings
        self._precompute_and_index_responses(dialogues)
        
        # Initialize training history
        self.history = {
            "train_loss": [],
            "val_loss": [],
            "train_metrics": {},
            "val_metrics": {}
        }

    def _build_models(self):
        """Initialize the shared encoder."""
        logger.info("Building encoder model...")
        
        # Shared encoder for both queries and responses
        self.encoder = EncoderModel(
            self.config,
            name="shared_encoder",
        )
        
        # Resize token embeddings after adding special tokens
        new_vocab_size = len(self.tokenizer)
        self.encoder.pretrained.resize_token_embeddings(new_vocab_size)
        logger.info(f"Token embeddings resized to: {new_vocab_size}")
        
        # Debug embeddings attributes
        logger.info("Inspecting embeddings attributes:")
        for attr in dir(self.encoder.pretrained.distilbert.embeddings):
            if not attr.startswith('_'):
                logger.info(f"  {attr}")
        
        # Try different ways to get embedding dimension
        try:
            # First try: from config
            embedding_dim = self.encoder.pretrained.config.dim
            logger.info("Got embedding dim from config")
        except AttributeError:
            try:
                # Second try: from word embeddings
                embedding_dim = self.encoder.pretrained.distilbert.embeddings.word_embeddings.embedding_dim
                logger.info("Got embedding dim from word embeddings")
            except AttributeError:
                try:
                    # Third try: from embeddings module
                    embedding_dim = self.encoder.pretrained.distilbert.embeddings.embedding_dim
                    logger.info("Got embedding dim from embeddings module")
                except AttributeError:
                    # Fallback to config value
                    embedding_dim = self.config.embedding_dim
                    logger.info("Using config embedding dim")
        
        vocab_size = len(self.tokenizer)
        
        logger.info(f"Encoder Embedding Dimension: {embedding_dim}")
        logger.info(f"Encoder Embedding Vocabulary Size: {vocab_size}")
        if vocab_size >= embedding_dim:
            logger.info("Encoder model built and embeddings resized successfully.")
        else:
            logger.error("Vocabulary size is less than embedding dimension.")
            raise ValueError("Vocabulary size is less than embedding dimension.")

    def _initialize_faiss(self):
        """Initialize FAISS index based on available resources."""
        logger.info("Initializing FAISS index...")
        # Determine if GPU FAISS is available
        try:
            res = faiss.StandardGpuResources()
            self.faiss_gpu = True
            logger.info("FAISS GPU resources initialized.")
        except Exception as e:
            self.faiss_gpu = False
            logger.info("FAISS GPU resources not available. Using FAISS CPU.")
        
        # Initialize FAISS index for Inner Product (for cosine similarity)
        if self.faiss_gpu:
            self.index = faiss.IndexFlatIP(self.config.embedding_dim)
            self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
        else:
            self.index = faiss.IndexFlatIP(self.config.embedding_dim)
        logger.info("FAISS index initialized.")

    def verify_faiss_index(self):
        """Verify that FAISS index matches the response pool."""
        indexed_size = self.index.ntotal
        pool_size = len(self.response_pool)
        logger.info(f"FAISS index size: {indexed_size}")
        logger.info(f"Response pool size: {pool_size}")
        if indexed_size != pool_size:
            logger.warning("Mismatch between FAISS index size and response pool size.")
        else:
            logger.info("FAISS index correctly matches the response pool.")
            
            
    def _precompute_and_index_responses(self, dialogues: List[dict]):
        """Precompute embeddings for all responses and index them using FAISS."""
        logger.info("Precomputing response embeddings and indexing with FAISS...")
        
        # Use tqdm for collecting responses
        responses = []
        for dialogue in tqdm(dialogues, desc="Collecting assistant responses"):
            turns = dialogue.get('turns', [])
            for turn in turns:
                if turn.get('speaker') == 'assistant' and 'text' in turn:
                    responses.append(turn['text'].strip())

        # Remove duplicates
        unique_responses = list(set(responses))
        logger.info(f"Found {len(unique_responses)} unique responses.")
        
        # Encode responses
        logger.info("Encoding unique responses")
        response_embeddings = self.encode_responses(unique_responses)
        response_embeddings = response_embeddings.numpy()
        
        # Ensure float32
        if response_embeddings.dtype != np.float32:
            response_embeddings = response_embeddings.astype('float32')
        
        # Ensure the array is contiguous in memory
        if not response_embeddings.flags['C_CONTIGUOUS']:
            logger.info("Making embeddings contiguous in memory.")
            response_embeddings = np.ascontiguousarray(response_embeddings)
        
        # Normalize embeddings for cosine similarity
        logger.info("Normalizing embeddings with FAISS.")
        faiss.normalize_L2(response_embeddings)
        
        # Add to FAISS index
        logger.info("Adding embeddings to FAISS index...")
        self.index.add(response_embeddings)
        logger.info(f"Indexed {self.index.ntotal} responses.")
        
        # Store responses and embeddings
        self.response_pool = unique_responses
        self.response_embeddings = response_embeddings
        logger.info("Precomputation and indexing completed.")

    def encode_responses(
        self, 
        responses: List[str], 
        batch_size: int = 64
    ) -> tf.Tensor:
        """
        Encodes a list of responses into embeddings, using chunked/batched processing
        to avoid running out of memory when there are many responses.

        Args:
            responses (List[str]): The list of response texts to encode.
            batch_size (int): How many responses to encode per chunk. 
                            Adjust based on available GPU/CPU memory.

        Returns:
            tf.Tensor: Tensor of shape (N, emb_dim) with all response embeddings.
        """
        # Accumulate embeddings in a list and concatenate at the end
        all_embeddings = []

        # Process the responses in chunks of 'batch_size'
        for start_idx in range(0, len(responses), batch_size):
            end_idx = start_idx + batch_size
            batch_texts = responses[start_idx:end_idx]

            # Tokenize the current batch
            encodings = self.tokenizer(
                batch_texts,
                padding='max_length',
                truncation=True,
                max_length=self.config.max_context_token_limit,
                return_tensors='tf',
            )

            # Run the encoder forward pass
            input_ids = encodings['input_ids']
            embeddings_batch = self.encoder(input_ids, training=False)

            # Cast to float32 if needed
            if embeddings_batch.dtype != tf.float32:
                embeddings_batch = tf.cast(embeddings_batch, tf.float32)

            # Collect
            all_embeddings.append(embeddings_batch)

        # Concatenate all batch embeddings along axis=0
        if len(all_embeddings) == 1:
            # Only one batch
            final_embeddings = all_embeddings[0]
        else:
            # Multiple batches, concatenate
            final_embeddings = tf.concat(all_embeddings, axis=0)
        
        return final_embeddings

    def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> tf.Tensor:
        """Encode a query with optional conversation context."""
        # Prepare query with context
        if context:
            context_str = ' '.join([
                f"{self.special_tokens['user']} {q} "
                f"{self.special_tokens['assistant']} {r}"
                for q, r in context[-self.config.max_context_turns:]
            ])
            query = f"{context_str} {self.special_tokens['user']} {query}"
        else:
            query = f"{self.special_tokens['user']} {query}"
        
        # Tokenize and encode
        encodings = self.tokenizer(
            [query],
            padding='max_length',
            truncation=True,
            max_length=self.config.max_context_token_limit,
            return_tensors='tf'
        )
        input_ids = encodings['input_ids']
        
        # Verify token IDs
        max_id = tf.reduce_max(input_ids).numpy()
        new_vocab_size = len(self.tokenizer)
        
        if max_id >= new_vocab_size:
            logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
            raise ValueError("Token ID exceeds vocabulary size.")
        
        # Get embeddings from the shared encoder
        return self.encoder(input_ids, training=False)

    def retrieve_responses_cross_encoder(
        self,
        query: str,
        top_k: int,
        reranker: Optional[CrossEncoderReranker] = None,
        summarizer: Optional[Summarizer] = None,
        summarize_threshold: int = 512  # Summarize over 512 tokens
    ) -> List[Tuple[str, float]]:
        """
        Retrieve top-k from FAISS, then re-rank them with a cross-encoder.
        Optionally summarize the user query if it's too long.
        """
        if reranker is None:
            reranker = self.reranker
        if summarizer is None:
            summarizer = self.summarizer
            
        # Optional summarization
        if summarizer and len(query.split()) > summarize_threshold:
            logger.info(f"Query is long. Summarizing before cross-encoder. Original length: {len(query.split())}")
            query = summarizer.summarize_text(query)
            logger.info(f"Summarized query: {query}")

        # 2) Dense retrieval
        dense_topk = self.retrieve_responses_faiss(query, top_k=top_k)  # [(resp, dense_score), ...]

        if not dense_topk:
            return []

        # 3) Cross-encoder rerank
        candidate_texts = [pair[0] for pair in dense_topk]
        cross_scores = reranker.rerank(query, candidate_texts, max_length=256)

        # Combine
        combined = [(text, score) for (text, _), score in zip(dense_topk, cross_scores)]
        # Sort descending by cross-encoder score
        combined.sort(key=lambda x: x[1], reverse=True)

        return combined
    
    def retrieve_responses_faiss(self, query: str, top_k: int = 5) -> List[Tuple[str, float]]:
        """Retrieve top-k responses using FAISS."""
        # Encode the query
        q_emb = self.encode_query(query)  # Shape: [1, embedding_dim]
        q_emb_np = q_emb.numpy().astype('float32')  # Ensure type matches FAISS requirements
        
        # Normalize the query embedding for cosine similarity
        faiss.normalize_L2(q_emb_np)
        
        # Search the FAISS index
        distances, indices = self.index.search(q_emb_np, top_k)
        
        # Map indices to responses and distances to similarities
        top_responses = []
        for i, idx in enumerate(indices[0]):
            if idx < len(self.response_pool):
                top_responses.append((self.response_pool[idx], float(distances[0][i])))
            else:
                logger.warning(f"FAISS returned invalid index {idx}. Skipping.")
        
        return top_responses
    
    def save_models(self, save_dir: Union[str, Path]):
        """Save models and configuration."""
        save_dir = Path(save_dir)
        save_dir.mkdir(parents=True, exist_ok=True)
        
        # Save config
        with open(save_dir / "config.json", "w") as f:
            json.dump(self.config.to_dict(), f, indent=2)
        
        # Save models
        self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
        
        # Save tokenizer
        self.tokenizer.save_pretrained(save_dir / "tokenizer")
        
        logger.info(f"Models and tokenizer saved to {save_dir}.")
    
    @classmethod
    def load_models(cls, load_dir: Union[str, Path]) -> 'RetrievalChatbot':
        """Load saved models and configuration."""
        load_dir = Path(load_dir)
        
        # Load config
        with open(load_dir / "config.json", "r") as f:
            config = ChatbotConfig.from_dict(json.load(f))
        
        # Initialize chatbot
        chatbot = cls(config)
        
        # Load models
        chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
            load_dir / "shared_encoder",
            config=config
        )
        
        # Load tokenizer
        chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
        
        logger.info(f"Models and tokenizer loaded from {load_dir}.")
        return chatbot
    
    @staticmethod
    def load_training_data(data_path: Union[str, Path], debug_samples: Optional[int] = None) -> List[dict]:
        """
        Load training data from a JSON file.
        
        Args:
            data_path (Union[str, Path]): Path to the JSON file containing dialogues.
            debug_samples (Optional[int]): Number of samples to load for debugging.
        
        Returns:
            List[dict]: List of dialogue dictionaries.
        """
        logger.info(f"Loading training data from {data_path}...")
        data_path = Path(data_path)
        if not data_path.exists():
            logger.error(f"Data file {data_path} does not exist.")
            return []
        
        with open(data_path, 'r', encoding='utf-8') as f:
            dialogues = json.load(f)
        
        if debug_samples is not None:
            dialogues = dialogues[:debug_samples]
            logger.info(f"Debug mode: Limited to {debug_samples} dialogues")
        
        logger.info(f"Loaded {len(dialogues)} dialogues.")
        return dialogues
    
    def prepare_dataset(
        self, 
        dialogues: List[dict], 
        neg_samples: int = 1,
        debug_samples: int = None
    ) -> Tuple[tf.Tensor, tf.Tensor]:
        """
        Prepares dataset for multiple-negatives ranking, 
        but also appends 'hard negative' pairs for each query.

        We'll generate:
        - (query, positive) as usual
        - (query, negative) for each query, using FAISS top-1 approx. negative.
        Then, in-batch training sees them as 'two different positives' 
        for the same query, forcing the model to discriminate them.
        """

        logger.info("Preparing in-batch dataset with hard negatives...")

        queries, positives = [], []

        # Assemble (q, p)
        for dialogue in dialogues:
            turns = dialogue.get('turns', [])
            for i in range(len(turns) - 1):
                current_turn = turns[i]
                next_turn = turns[i+1]

                if (current_turn.get('speaker') == 'user' 
                    and next_turn.get('speaker') == 'assistant' 
                    and 'text' in current_turn 
                    and 'text' in next_turn):
                    
                    query_text = current_turn['text'].strip()
                    pos_text   = next_turn['text'].strip()
                    
                    queries.append(query_text)
                    positives.append(pos_text)
        
        # Debug slicing
        if debug_samples is not None:
            queries = queries[:debug_samples]
            positives = positives[:debug_samples]
            logger.info(f"Debug mode: limited to {debug_samples} pairs.")
        
        logger.info(f"Prepared {len(queries)} (query, positive) pairs initially.")

        # Find a hard negative from FAISS for each (q, p)
        # Create a second 'positive' row => (q, negative). In-batch, it's seen as a different 'positive' row, but is a hard negative.
        augmented_queries = []
        augmented_positives = []

        for q_text, p_text in zip(queries, positives):
            neg_texts = self._find_hard_negative(q_text, p_text, top_k=5, neg_samples=neg_samples)
            for neg_text in neg_texts:
                augmented_queries.append(q_text)
                augmented_positives.append(neg_text)

        logger.info(f"Found hard negatives for {len(augmented_queries)} queries.")

        # Combine them into a single big list -> Original pairs: (q, p) & Hard neg pairs: (q, n)
        final_queries = queries + augmented_queries
        final_positives = positives + augmented_positives
        logger.info(f"Total dataset size after adding hard neg: {len(final_queries)}")

        # Tokenize
        encoded_queries = self.tokenizer(
            final_queries,
            padding='max_length',
            truncation=True,
            max_length=self.config.max_context_token_limit,
            return_tensors='tf'
        )
        encoded_positives = self.tokenizer(
            final_positives,
            padding='max_length',
            truncation=True,
            max_length=self.config.max_context_token_limit,
            return_tensors='tf'
        )
        
        q_tensor = encoded_queries['input_ids']
        p_tensor = encoded_positives['input_ids']
        
        logger.info("Tokenized and padded sequences for in-batch training + hard negatives.")
        return q_tensor, p_tensor
    
    def _find_hard_negative(
        self, 
        query_text: str, 
        positive_text: str, 
        top_k: int = 5,
        neg_samples: int = 1
    ) -> List[str]:
        """
        Return up to `neg_samples` unique negatives from top_k FAISS results,
        excluding the known positive_text.
        """
        # Encode the query to get the embedding
        query_emb = self.encode_query(query_text)
        q_emb_np = query_emb.numpy().astype('float32')
        
        # Normalize for cosine similarity
        faiss.normalize_L2(q_emb_np)
        
        # Search in FAISS
        distances, indices = self.index.search(q_emb_np, top_k)
        
        # Exclude the actual positive from these results
        hard_negatives = []
        for idx in indices[0]:
            if idx < len(self.response_pool):
                candidate = self.response_pool[idx].strip()
                if candidate != positive_text.strip():
                    hard_negatives.append(candidate)
                    if len(hard_negatives) == neg_samples:
                        break

        return hard_negatives
    
    def train(
        self,
        q_pad: tf.Tensor,
        p_pad: tf.Tensor,
        epochs: int = 20,
        batch_size: int = 16,
        validation_split: float = 0.2,
        checkpoint_dir: str = "checkpoints/",
        use_lr_schedule: bool = True,
        peak_lr: float = 2e-5,
        warmup_steps_ratio: float = 0.1,
        early_stopping_patience: int = 3,
        min_delta: float = 1e-4,
        accum_steps: int = 2  # Gradient accumulation steps
    ):
        dataset_size = tf.shape(q_pad)[0].numpy()
        val_size = int(dataset_size * validation_split)
        train_size = dataset_size - val_size
        
        logger.info(f"Total samples: {dataset_size}")
        logger.info(f"Training samples: {train_size}")
        logger.info(f"Validation samples: {val_size}")

        steps_per_epoch = train_size // batch_size
        if train_size % batch_size != 0:
            steps_per_epoch += 1
        total_steps = steps_per_epoch * epochs
        logger.info(f"Total training steps (approx): {total_steps}")

        # 1) Set up LR schedule or fixed LR
        if use_lr_schedule:
            warmup_steps = int(total_steps * warmup_steps_ratio)
            lr_schedule = self._get_lr_schedule(
                total_steps=total_steps,
                peak_lr=peak_lr,
                warmup_steps=warmup_steps
            )
            self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
            logger.info("Using custom learning rate schedule.")
        else:
            self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
            logger.info("Using fixed learning rate.")

        # 2) Prepare data splits
        train_q = q_pad[:train_size]
        train_p = p_pad[:train_size]
        val_q = q_pad[train_size:]
        val_p = p_pad[train_size:]

        train_dataset = (tf.data.Dataset.from_tensor_slices((train_q, train_p))
                    .shuffle(4096)
                    .batch(batch_size)
                    .prefetch(tf.data.AUTOTUNE))

        val_dataset = (tf.data.Dataset.from_tensor_slices((val_q, val_p))
                    .batch(batch_size)
                    .prefetch(tf.data.AUTOTUNE))

        # 3) Checkpoint + manager
        checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
        manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)

        # 4) TensorBoard setup
        log_dir = Path(checkpoint_dir) / "tensorboard_logs"
        log_dir.mkdir(parents=True, exist_ok=True)

        current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
        train_log_dir = str(log_dir / f"train_{current_time}")
        val_log_dir = str(log_dir / f"val_{current_time}")

        train_summary_writer = tf.summary.create_file_writer(train_log_dir)
        val_summary_writer = tf.summary.create_file_writer(val_log_dir)
        
        logger.info(f"TensorBoard logs will be saved in {log_dir}")

        # 5) Early stopping
        best_val_loss = float("inf")
        epochs_no_improve = 0

        logger.info("Beginning training loop...")
        global_step = 0

        # Prepare zero-initialized accumulators for your trainable variables
        # We'll accumulate gradients across mini-batches, then apply them every accum_steps.
        train_vars = self.encoder.pretrained.trainable_variables
        accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]

        from tqdm import tqdm
        for epoch in range(1, epochs + 1):
            logger.info(f"\n=== Epoch {epoch}/{epochs} ===")
            epoch_loss_avg = tf.keras.metrics.Mean()

            step_in_epoch = 0
            with tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}") as pbar:
                for (q_batch, p_batch) in train_dataset:
                    step_in_epoch += 1
                    global_step += 1

                    with tf.GradientTape() as tape:
                        q_enc = self.encoder(q_batch, training=True)
                        p_enc = self.encoder(p_batch, training=True)

                        sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
                        bsz = tf.shape(q_enc)[0]
                        labels = tf.range(bsz, dtype=tf.int32)
                        loss_value = tf.nn.sparse_softmax_cross_entropy_with_logits(
                            labels=labels, logits=sim_matrix
                        )
                        loss_value = tf.reduce_mean(loss_value)

                    gradients = tape.gradient(loss_value, train_vars)

                    # -- Accumulate gradients --
                    for i, grad in enumerate(gradients):
                        if grad is not None:
                            accum_grads[i] += tf.cast(grad, tf.float32)

                    epoch_loss_avg(loss_value)

                    # -- Apply gradients every 'accum_steps' mini-batches --
                    if (step_in_epoch % accum_steps) == 0:
                        # Scale by 1/accum_steps so that each accumulation cycle
                        # is effectively the same as one “normal” update
                        for i in range(len(accum_grads)):
                            accum_grads[i] /= accum_steps

                        self.optimizer.apply_gradients(
                            [(accum_grads[i], train_vars[i]) for i in range(len(accum_grads))]
                        )
                        # Reset the accumulator
                        accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]

                    # Logging / tqdm updates
                    if use_lr_schedule:
                        # measure current LR
                        lr = self.optimizer.learning_rate
                        if isinstance(lr, tf.keras.optimizers.schedules.LearningRateSchedule):
                            current_step = tf.cast(self.optimizer.iterations, tf.float32)
                            current_lr = lr(current_step)
                        else:
                            current_lr = lr
                        current_lr_value = float(current_lr.numpy())
                    else:
                        current_lr_value = float(self.optimizer.learning_rate.numpy())

                    pbar.update(1)
                    pbar.set_postfix({
                        "loss": f"{loss_value.numpy():.4f}",
                        "lr": f"{current_lr_value:.2e}"
                    })

                    # TensorBoard logging omitted for brevity...

            # -- Handle leftover partial accumulation at epoch end --
            leftover = (step_in_epoch % accum_steps)
            if leftover != 0:
                logger.info(f"Applying leftover accum_grads for partial batch group (size={leftover}).")
                # If you want each leftover batch to contribute proportionally:
                # multiply by leftover/accum_steps (this ensures leftover
                # steps have the same "average" effect as a full accumulation cycle)
                for i in range(len(accum_grads)):
                    accum_grads[i] *= float(leftover) / float(accum_steps)

                self.optimizer.apply_gradients(
                    [(accum_grads[i], train_vars[i]) for i in range(len(accum_grads))]
                )
                accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]

            # Validation
            val_loss_avg = tf.keras.metrics.Mean()
            for q_val, p_val in val_dataset:
                q_enc = self.encoder(q_val, training=False)
                p_enc = self.encoder(p_val, training=False)
                sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
                bs_val = tf.shape(q_enc)[0]
                labels_val = tf.range(bs_val, dtype=tf.int32)
                loss_val = tf.nn.sparse_softmax_cross_entropy_with_logits(
                    labels=labels_val, 
                    logits=sim_matrix
                )
                val_loss_avg(tf.reduce_mean(loss_val))

            train_loss = epoch_loss_avg.result().numpy()
            val_loss = val_loss_avg.result().numpy()

            logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")

            # TensorBoard: validation loss
            with val_summary_writer.as_default():
                tf.summary.scalar("val_loss", val_loss, step=epoch)

            # Save checkpoint
            manager.save()

            # Update history
            self.history['train_loss'].append(train_loss)
            self.history['val_loss'].append(val_loss)
            self.history.setdefault('learning_rate', []).append(float(current_lr_value))

            # Early stopping
            if val_loss < best_val_loss - min_delta:
                best_val_loss = val_loss
                epochs_no_improve = 0
                logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
            else:
                epochs_no_improve += 1
                logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
                if epochs_no_improve >= early_stopping_patience:
                    logger.info("Early stopping triggered.")
                    break

        logger.info("In-batch training completed!")
    
    def _get_lr_schedule(
        self,
        total_steps: int,
        peak_lr: float,
        warmup_steps: int
    ) -> tf.keras.optimizers.schedules.LearningRateSchedule:
        """Create a custom learning rate schedule with warmup and cosine decay."""
        class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
            def __init__(
                self,
                total_steps: int,
                peak_lr: float,
                warmup_steps: int
            ):
                super().__init__()
                self.total_steps = tf.cast(total_steps, tf.float32)
                self.peak_lr = tf.cast(peak_lr, tf.float32)
                
                # Adjust warmup_steps to not exceed half of total_steps
                adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
                self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
                
                # Calculate and store constants
                self.initial_lr = self.peak_lr * 0.1  # Start at 10% of peak
                self.min_lr = self.peak_lr * 0.01     # Minimum 1% of peak
                
                logger.info(f"Learning rate schedule initialized:")
                logger.info(f"  Initial LR: {float(self.initial_lr):.6f}")
                logger.info(f"  Peak LR: {float(self.peak_lr):.6f}")
                logger.info(f"  Min LR: {float(self.min_lr):.6f}")
                logger.info(f"  Warmup steps: {int(self.warmup_steps)}")
                logger.info(f"  Total steps: {int(self.total_steps)}")
            
            def __call__(self, step):
                step = tf.cast(step, tf.float32)
                
                # Warmup phase
                warmup_factor = tf.minimum(1.0, step / self.warmup_steps)
                warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
                
                # Decay phase
                decay_steps = tf.maximum(1.0, self.total_steps - self.warmup_steps)
                decay_factor = (step - self.warmup_steps) / decay_steps
                decay_factor = tf.minimum(tf.maximum(0.0, decay_factor), 1.0)  # Clip to [0,1]
                
                cosine_decay = 0.5 * (1.0 + tf.cos(tf.constant(math.pi) * decay_factor))
                decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
                
                # Choose between warmup and decay
                final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
                
                # Ensure learning rate is valid
                final_lr = tf.maximum(self.min_lr, final_lr)
                final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
                
                return final_lr
            
            def get_config(self):
                return {
                    "total_steps": self.total_steps,
                    "peak_lr": self.peak_lr,
                    "warmup_steps": self.warmup_steps,
                }
        
        return CustomSchedule(total_steps, peak_lr, warmup_steps)

    def _cosine_similarity(self, emb1: np.ndarray, emb2: np.ndarray) -> np.ndarray:
        """Compute cosine similarity between two numpy arrays."""
        normalized_emb1 = emb1 / np.linalg.norm(emb1, axis=1, keepdims=True)
        normalized_emb2 = emb2 / np.linalg.norm(emb2, axis=1, keepdims=True)
        return np.dot(normalized_emb1, normalized_emb2.T)

    def chat(
        self,
        query: str,
        conversation_history: Optional[List[Tuple[str, str]]] = None,
        quality_checker: Optional['ResponseQualityChecker'] = None,
        top_k: int = 5,
    ) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
        """
        Example chat method that always uses cross-encoder re-ranking 
        if self.reranker is available.
        """
        @self.run_on_device
        def get_response(self_arg, query_arg):  # Add parameters that match decorator's expectations
            # 1) Build conversation context string
            conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
            
            # 2) Retrieve + cross-encoder re-rank
            results = self_arg.retrieve_responses_cross_encoder(
                query=conversation_str,
                top_k=top_k,
                reranker=self_arg.reranker,
                summarizer=self_arg.summarizer,
                summarize_threshold=512
            )

            # 3) Handle empty or confidence
            if not results:
                return (
                    "I'm sorry, but I couldn't find a relevant response.",
                    [],
                    {}
                )

            if quality_checker:
                metrics = quality_checker.check_response_quality(query_arg, results)
                if not metrics.get('is_confident', False):
                    return (
                        "I need more information to provide a good answer. Could you please clarify?",
                        results,
                        metrics
                    )
                return results[0][0], results, metrics
            
            return results[0][0], results, {}
        
        return get_response(self, query)

    def _build_conversation_context(
        self, 
        query: str, 
        conversation_history: Optional[List[Tuple[str, str]]]
    ) -> str:
        """Build conversation context with better memory management."""
        if not conversation_history:
            return f"{self.special_tokens['user']} {query}"
            
        conversation_parts = []
        for user_txt, assistant_txt in conversation_history:
            conversation_parts.extend([
                f"{self.special_tokens['user']} {user_txt}",
                f"{self.special_tokens['assistant']} {assistant_txt}"
            ])
            
        conversation_parts.append(f"{self.special_tokens['user']} {query}")
        return "\n".join(conversation_parts)

# def prepare_dataset(
#     self, 
#     dialogues: List[dict], 
#     debug_samples: int = None
# ) -> Tuple[tf.Tensor, tf.Tensor]:
#     """
#     Prepares dataset for in-batch negatives:
#     Only returns (query, positive) pairs.
#     """
#     logger.info("Preparing in-batch dataset...")

#     queries, positives = [], []

#     for dialogue in dialogues:
#         turns = dialogue.get('turns', [])
#         for i in range(len(turns) - 1):
#             current_turn = turns[i]
#             next_turn = turns[i+1]

#             if (current_turn.get('speaker') == 'user' and 
#                 next_turn.get('speaker') == 'assistant' and 
#                 'text' in current_turn and 
#                 'text' in next_turn):
                
#                 query = current_turn['text'].strip()
#                 positive = next_turn['text'].strip()
                
#                 queries.append(query)
#                 positives.append(positive)
    
#     # Optional debug slicing
#     if debug_samples is not None:
#         queries = queries[:debug_samples]
#         positives = positives[:debug_samples]
#         logger.info(f"Debug mode: limited to {debug_samples} pairs.")
    
#     logger.info(f"Prepared {len(queries)} (query, positive) pairs.")

#     # Tokenize queries
#     encoded_queries = self.tokenizer(
#         queries,
#         padding='max_length',
#         truncation=True,
#         max_length=self.config.max_sequence_length,
#         return_tensors='tf'
#     )
#     # Tokenize positives
#     encoded_positives = self.tokenizer(
#         positives,
#         padding='max_length',
#         truncation=True,
#         max_length=self.config.max_sequence_length,
#         return_tensors='tf'
#     )
    
#     q_tensor = encoded_queries['input_ids']
#     p_tensor = encoded_positives['input_ids']
    
#     logger.info("Tokenized and padded sequences for in-batch training.")
#     return q_tensor, p_tensor

# def train(
#     self,
#     q_pad: tf.Tensor,
#     p_pad: tf.Tensor,
#     epochs: int = 20,
#     batch_size: int = 16,
#     validation_split: float = 0.2,
#     checkpoint_dir: str = "checkpoints/",
#     use_lr_schedule: bool = True,
#     peak_lr: float = 2e-5,
#     warmup_steps_ratio: float = 0.1,
#     early_stopping_patience: int = 3,
#     min_delta: float = 1e-4
# ):
#     dataset_size = tf.shape(q_pad)[0].numpy()
#     val_size = int(dataset_size * validation_split)
#     train_size = dataset_size - val_size
    
#     logger.info(f"Total samples: {dataset_size}")
#     logger.info(f"Training samples: {train_size}")
#     logger.info(f"Validation samples: {val_size}")

#     steps_per_epoch = train_size // batch_size
#     if train_size % batch_size != 0:
#         steps_per_epoch += 1
#     total_steps = steps_per_epoch * epochs
#     logger.info(f"Total training steps (approx): {total_steps}")

#     # 1) Set up LR schedule or fixed LR
#     if use_lr_schedule:
#         warmup_steps = int(total_steps * warmup_steps_ratio)
#         lr_schedule = self._get_lr_schedule(
#             total_steps=total_steps,
#             peak_lr=peak_lr,
#             warmup_steps=warmup_steps
#         )
#         self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
#         logger.info("Using custom learning rate schedule.")
#     else:
#         self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
#         logger.info("Using fixed learning rate.")

#     # 2) Prepare data splits
#     train_q = q_pad[:train_size]
#     train_p = p_pad[:train_size]
#     val_q = q_pad[train_size:]
#     val_p = p_pad[train_size:]

#     train_dataset = tf.data.Dataset.from_tensor_slices((train_q, train_p))
#     train_dataset = train_dataset.shuffle(buffer_size=4096).batch(batch_size)

#     val_dataset = tf.data.Dataset.from_tensor_slices((val_q, val_p))
#     val_dataset = val_dataset.batch(batch_size)

#     # 3) Checkpoint + manager
#     checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
#     manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)

#     # 4) TensorBoard setup
#     log_dir = Path(checkpoint_dir) / "tensorboard_logs"
#     log_dir.mkdir(parents=True, exist_ok=True)

#     current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
#     train_log_dir = str(log_dir / f"train_{current_time}")
#     val_log_dir = str(log_dir / f"val_{current_time}")

#     train_summary_writer = tf.summary.create_file_writer(train_log_dir)
#     val_summary_writer = tf.summary.create_file_writer(val_log_dir)
    
#     logger.info(f"TensorBoard logs will be saved in {log_dir}")

#     # 5) Early stopping
#     best_val_loss = float("inf")
#     epochs_no_improve = 0

#     logger.info("Beginning training loop...")
#     global_step = 0

#     from tqdm import tqdm
#     for epoch in range(1, epochs + 1):
#         logger.info(f"\n=== Epoch {epoch}/{epochs} ===")
#         epoch_loss_avg = tf.keras.metrics.Mean()

#         # Training loop
#         with tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}") as pbar:
#             for (q_batch, p_batch) in train_dataset:
#                 global_step += 1

#                 # Train step
#                 batch_loss = self._train_step(q_batch, p_batch)
#                 epoch_loss_avg(batch_loss)

#                 # Get current LR
#                 if use_lr_schedule:
#                     lr = self.optimizer.learning_rate
#                     if isinstance(lr, tf.keras.optimizers.schedules.LearningRateSchedule):
#                         # Get the current step
#                         current_step = tf.cast(self.optimizer.iterations, tf.float32)
#                         # Compute the current learning rate
#                         current_lr = lr(current_step)
#                     else:
#                         # If learning_rate is not a schedule, use it directly
#                         current_lr = lr
#                     # Convert to float for logging
#                     current_lr_value = float(current_lr.numpy())
#                 else:
#                     # If using fixed learning rate
#                     current_lr_value = float(self.optimizer.learning_rate.numpy())

#                 # Update tqdm
#                 pbar.update(1)
#                 pbar.set_postfix({
#                     "loss": f"{batch_loss.numpy():.4f}",
#                     "lr": f"{current_lr_value:.2e}"
#                 })

#                 # TensorBoard: log train metrics per step
#                 with train_summary_writer.as_default():
#                     tf.summary.scalar("loss", batch_loss, step=global_step)
#                     tf.summary.scalar("learning_rate", current_lr_value, step=global_step)

#         # Validation
#         val_loss_avg = tf.keras.metrics.Mean()
#         for q_val, p_val in val_dataset:
#             q_enc = self.encoder(q_val, training=False)
#             p_enc = self.encoder(p_val, training=False)
#             sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
#             bs_val = tf.shape(q_enc)[0]
#             labels_val = tf.range(bs_val, dtype=tf.int32)
#             loss_val = tf.nn.sparse_softmax_cross_entropy_with_logits(
#                 labels=labels_val, 
#                 logits=sim_matrix
#             )
#             val_loss_avg(tf.reduce_mean(loss_val))

#         train_loss = epoch_loss_avg.result().numpy()
#         val_loss = val_loss_avg.result().numpy()

#         logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")

#         # TensorBoard: validation loss
#         with val_summary_writer.as_default():
#             tf.summary.scalar("val_loss", val_loss, step=epoch)

#         # Save checkpoint
#         manager.save()

#         # Update history
#         self.history['train_loss'].append(train_loss)
#         self.history['val_loss'].append(val_loss)
#         self.history.setdefault('learning_rate', []).append(float(current_lr_value))

#         # Early stopping
#         if val_loss < best_val_loss - min_delta:
#             best_val_loss = val_loss
#             epochs_no_improve = 0
#             logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
#         else:
#             epochs_no_improve += 1
#             logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
#             if epochs_no_improve >= early_stopping_patience:
#                 logger.info("Early stopping triggered.")
#                 break

#     logger.info("In-batch training completed!")

# @tf.function
# def _train_step(self, q_batch, p_batch):
#     """
#     Single training step using in-batch negatives.
#     q_batch: (batch_size, seq_len) int32 input_ids for queries
#     p_batch: (batch_size, seq_len) int32 input_ids for positives
#     """
#     with tf.GradientTape() as tape:
#         # Encode queries and positives
#         q_enc = self.encoder(q_batch, training=True)  # [B, emb_dim]
#         p_enc = self.encoder(p_batch, training=True)  # [B, emb_dim]

#         # Compute similarity matrix: (B, B) = q_enc * p_enc^T
#         # If embeddings are L2-normalized, this is cosine similarity
#         sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)  # [B, B]

#         # Labels are just the diagonal indices
#         batch_size = tf.shape(q_enc)[0]
#         labels = tf.range(batch_size, dtype=tf.int32)  # [0..B-1]

#         # Softmax cross-entropy
#         loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
#             labels=labels, 
#             logits=sim_matrix
#         )
#         loss = tf.reduce_mean(loss)

#     # Compute gradients for the pretrained DistilBERT variables only
#     train_vars = self.encoder.pretrained.trainable_variables
#     gradients = tape.gradient(loss, train_vars)
    
#     # Remove any None grads (in case some layers are frozen)
#     grads_and_vars = [(g, v) for g, v in zip(gradients, train_vars) if g is not None]
#     if grads_and_vars:
#         self.optimizer.apply_gradients(grads_and_vars)
    
#     return loss