File size: 50,593 Bytes
f7b283c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 |
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
import numpy as np
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from tqdm import tqdm
from pathlib import Path
import datetime
import faiss
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
from logger_config import config_logger
logger = config_logger(__name__)
@dataclass
class ChatbotConfig:
"""Configuration for the RetrievalChatbot."""
vocab_size: int = 30526 # DistilBERT vocab size
max_context_token_limit: int = 512
embedding_dim: int = 512 # Match DistilBERT's dimension
encoder_units: int = 256
num_attention_heads: int = 8
dropout_rate: float = 0.2
l2_reg_weight: float = 0.001
margin: float = 0.3
learning_rate: float = 0.001
min_text_length: int = 3
max_context_turns: int = 5
warmup_steps: int = 200
pretrained_model: str = 'distilbert-base-uncased'
dtype: str = 'float32'
freeze_embeddings: bool = False
# Additional configurations can be added here
def to_dict(self) -> dict:
"""Convert config to dictionary."""
return {k: str(v) if isinstance(v, Path) else v
for k, v in self.__dict__.items()}
@classmethod
def from_dict(cls, config_dict: dict) -> 'ChatbotConfig':
"""Create config from dictionary."""
return cls(**{k: v for k, v in config_dict.items()
if k in cls.__dataclass_fields__})
class EncoderModel(tf.keras.Model):
"""Dual encoder model with pretrained embeddings."""
def __init__(
self,
config: ChatbotConfig,
name: str = "encoder",
shared_weights: bool = False,
**kwargs
):
super().__init__(name=name, **kwargs)
self.config = config
self.shared_weights = shared_weights
# Load pretrained model
self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
# Freeze pretrained weights if specified
self.pretrained.distilbert.embeddings.trainable = False
for i, layer_module in enumerate(self.pretrained.distilbert.transformer.layer):
if i < 1: # freeze first layer
layer_module.trainable = False
else:
layer_module.trainable = True
# Pooling layer (Global Average Pooling)
self.pooler = tf.keras.layers.GlobalAveragePooling1D()
# Projection layer
self.projection = tf.keras.layers.Dense(
config.embedding_dim,
activation='tanh',
name="projection"
)
# Dropout and normalization
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.normalize = tf.keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1)
)
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
"""Forward pass."""
# Get pretrained embeddings
pretrained_outputs = self.pretrained(inputs, training=training)
x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]
# Apply pooling, projection, dropout, and normalization
x = self.pooler(x) # Shape: [batch_size, 768]
x = self.projection(x) # Shape: [batch_size, 512]
x = self.dropout(x, training=training) # Apply dropout
x = self.normalize(x) # Shape: [batch_size, 512]
return x
def get_config(self) -> dict:
"""Return the config of the model."""
config = super().get_config()
config.update({
"config": self.config.to_dict(),
"shared_weights": self.shared_weights,
"name": self.name
})
return config
class RetrievalChatbot(DeviceAwareModel):
"""Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
def __init__(self, config: ChatbotConfig, dialogues: List[dict] = [], device: str = None, strategy=None, reranker: Optional[CrossEncoderReranker] = None, summarizer: Optional[Summarizer] = None):
self.config = config
self.strategy = strategy
self.setup_device(device)
if reranker is None:
logger.info("Creating default CrossEncoderReranker...")
reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
self.reranker = reranker
if summarizer is None:
logger.info("Creating default Summarizer...")
summarizer = Summarizer(device=self.device)
self.summarizer = summarizer
# Configure XLA optimization if on GPU/TPU
if self.device in ["GPU", "TPU"]:
tf.config.optimizer.set_jit(True)
logger.info(f"XLA compilation enabled for {self.device}")
# Configure mixed precision for GPU/TPU
if self.device != "CPU":
policy = tf.keras.mixed_precision.Policy('mixed_float16')
tf.keras.mixed_precision.set_global_policy(policy)
logger.info("Mixed precision training enabled (float16)")
# Special tokens
self.special_tokens = {
"user": "<USER>",
"assistant": "<ASSISTANT>",
"context": "<CONTEXT>",
"sep": "<SEP>"
}
# Initialize tokenizer and add special tokens
self.tokenizer = AutoTokenizer.from_pretrained(config.pretrained_model)
self.tokenizer.add_special_tokens(
{'additional_special_tokens': list(self.special_tokens.values())}
)
# Build encoders within device strategy scope
if self.strategy:
with self.strategy.scope():
self._build_models()
else:
self._build_models()
# Initialize FAISS index
self._initialize_faiss()
# Precompute and index response embeddings
self._precompute_and_index_responses(dialogues)
# Initialize training history
self.history = {
"train_loss": [],
"val_loss": [],
"train_metrics": {},
"val_metrics": {}
}
def _build_models(self):
"""Initialize the shared encoder."""
logger.info("Building encoder model...")
# Shared encoder for both queries and responses
self.encoder = EncoderModel(
self.config,
name="shared_encoder",
)
# Resize token embeddings after adding special tokens
new_vocab_size = len(self.tokenizer)
self.encoder.pretrained.resize_token_embeddings(new_vocab_size)
logger.info(f"Token embeddings resized to: {new_vocab_size}")
# Debug embeddings attributes
logger.info("Inspecting embeddings attributes:")
for attr in dir(self.encoder.pretrained.distilbert.embeddings):
if not attr.startswith('_'):
logger.info(f" {attr}")
# Try different ways to get embedding dimension
try:
# First try: from config
embedding_dim = self.encoder.pretrained.config.dim
logger.info("Got embedding dim from config")
except AttributeError:
try:
# Second try: from word embeddings
embedding_dim = self.encoder.pretrained.distilbert.embeddings.word_embeddings.embedding_dim
logger.info("Got embedding dim from word embeddings")
except AttributeError:
try:
# Third try: from embeddings module
embedding_dim = self.encoder.pretrained.distilbert.embeddings.embedding_dim
logger.info("Got embedding dim from embeddings module")
except AttributeError:
# Fallback to config value
embedding_dim = self.config.embedding_dim
logger.info("Using config embedding dim")
vocab_size = len(self.tokenizer)
logger.info(f"Encoder Embedding Dimension: {embedding_dim}")
logger.info(f"Encoder Embedding Vocabulary Size: {vocab_size}")
if vocab_size >= embedding_dim:
logger.info("Encoder model built and embeddings resized successfully.")
else:
logger.error("Vocabulary size is less than embedding dimension.")
raise ValueError("Vocabulary size is less than embedding dimension.")
def _initialize_faiss(self):
"""Initialize FAISS index based on available resources."""
logger.info("Initializing FAISS index...")
# Determine if GPU FAISS is available
try:
res = faiss.StandardGpuResources()
self.faiss_gpu = True
logger.info("FAISS GPU resources initialized.")
except Exception as e:
self.faiss_gpu = False
logger.info("FAISS GPU resources not available. Using FAISS CPU.")
# Initialize FAISS index for Inner Product (for cosine similarity)
if self.faiss_gpu:
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
else:
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
logger.info("FAISS index initialized.")
def verify_faiss_index(self):
"""Verify that FAISS index matches the response pool."""
indexed_size = self.index.ntotal
pool_size = len(self.response_pool)
logger.info(f"FAISS index size: {indexed_size}")
logger.info(f"Response pool size: {pool_size}")
if indexed_size != pool_size:
logger.warning("Mismatch between FAISS index size and response pool size.")
else:
logger.info("FAISS index correctly matches the response pool.")
def _precompute_and_index_responses(self, dialogues: List[dict]):
"""Precompute embeddings for all responses and index them using FAISS."""
logger.info("Precomputing response embeddings and indexing with FAISS...")
# Use tqdm for collecting responses
responses = []
for dialogue in tqdm(dialogues, desc="Collecting assistant responses"):
turns = dialogue.get('turns', [])
for turn in turns:
if turn.get('speaker') == 'assistant' and 'text' in turn:
responses.append(turn['text'].strip())
# Remove duplicates
unique_responses = list(set(responses))
logger.info(f"Found {len(unique_responses)} unique responses.")
# Encode responses
logger.info("Encoding unique responses")
response_embeddings = self.encode_responses(unique_responses)
response_embeddings = response_embeddings.numpy()
# Ensure float32
if response_embeddings.dtype != np.float32:
response_embeddings = response_embeddings.astype('float32')
# Ensure the array is contiguous in memory
if not response_embeddings.flags['C_CONTIGUOUS']:
logger.info("Making embeddings contiguous in memory.")
response_embeddings = np.ascontiguousarray(response_embeddings)
# Normalize embeddings for cosine similarity
logger.info("Normalizing embeddings with FAISS.")
faiss.normalize_L2(response_embeddings)
# Add to FAISS index
logger.info("Adding embeddings to FAISS index...")
self.index.add(response_embeddings)
logger.info(f"Indexed {self.index.ntotal} responses.")
# Store responses and embeddings
self.response_pool = unique_responses
self.response_embeddings = response_embeddings
logger.info("Precomputation and indexing completed.")
def encode_responses(
self,
responses: List[str],
batch_size: int = 64
) -> tf.Tensor:
"""
Encodes a list of responses into embeddings, using chunked/batched processing
to avoid running out of memory when there are many responses.
Args:
responses (List[str]): The list of response texts to encode.
batch_size (int): How many responses to encode per chunk.
Adjust based on available GPU/CPU memory.
Returns:
tf.Tensor: Tensor of shape (N, emb_dim) with all response embeddings.
"""
# Accumulate embeddings in a list and concatenate at the end
all_embeddings = []
# Process the responses in chunks of 'batch_size'
for start_idx in range(0, len(responses), batch_size):
end_idx = start_idx + batch_size
batch_texts = responses[start_idx:end_idx]
# Tokenize the current batch
encodings = self.tokenizer(
batch_texts,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf',
)
# Run the encoder forward pass
input_ids = encodings['input_ids']
embeddings_batch = self.encoder(input_ids, training=False)
# Cast to float32 if needed
if embeddings_batch.dtype != tf.float32:
embeddings_batch = tf.cast(embeddings_batch, tf.float32)
# Collect
all_embeddings.append(embeddings_batch)
# Concatenate all batch embeddings along axis=0
if len(all_embeddings) == 1:
# Only one batch
final_embeddings = all_embeddings[0]
else:
# Multiple batches, concatenate
final_embeddings = tf.concat(all_embeddings, axis=0)
return final_embeddings
def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> tf.Tensor:
"""Encode a query with optional conversation context."""
# Prepare query with context
if context:
context_str = ' '.join([
f"{self.special_tokens['user']} {q} "
f"{self.special_tokens['assistant']} {r}"
for q, r in context[-self.config.max_context_turns:]
])
query = f"{context_str} {self.special_tokens['user']} {query}"
else:
query = f"{self.special_tokens['user']} {query}"
# Tokenize and encode
encodings = self.tokenizer(
[query],
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
input_ids = encodings['input_ids']
# Verify token IDs
max_id = tf.reduce_max(input_ids).numpy()
new_vocab_size = len(self.tokenizer)
if max_id >= new_vocab_size:
logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
raise ValueError("Token ID exceeds vocabulary size.")
# Get embeddings from the shared encoder
return self.encoder(input_ids, training=False)
def retrieve_responses_cross_encoder(
self,
query: str,
top_k: int,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
summarize_threshold: int = 512 # Summarize over 512 tokens
) -> List[Tuple[str, float]]:
"""
Retrieve top-k from FAISS, then re-rank them with a cross-encoder.
Optionally summarize the user query if it's too long.
"""
if reranker is None:
reranker = self.reranker
if summarizer is None:
summarizer = self.summarizer
# Optional summarization
if summarizer and len(query.split()) > summarize_threshold:
logger.info(f"Query is long. Summarizing before cross-encoder. Original length: {len(query.split())}")
query = summarizer.summarize_text(query)
logger.info(f"Summarized query: {query}")
# 2) Dense retrieval
dense_topk = self.retrieve_responses_faiss(query, top_k=top_k) # [(resp, dense_score), ...]
if not dense_topk:
return []
# 3) Cross-encoder rerank
candidate_texts = [pair[0] for pair in dense_topk]
cross_scores = reranker.rerank(query, candidate_texts, max_length=256)
# Combine
combined = [(text, score) for (text, _), score in zip(dense_topk, cross_scores)]
# Sort descending by cross-encoder score
combined.sort(key=lambda x: x[1], reverse=True)
return combined
def retrieve_responses_faiss(self, query: str, top_k: int = 5) -> List[Tuple[str, float]]:
"""Retrieve top-k responses using FAISS."""
# Encode the query
q_emb = self.encode_query(query) # Shape: [1, embedding_dim]
q_emb_np = q_emb.numpy().astype('float32') # Ensure type matches FAISS requirements
# Normalize the query embedding for cosine similarity
faiss.normalize_L2(q_emb_np)
# Search the FAISS index
distances, indices = self.index.search(q_emb_np, top_k)
# Map indices to responses and distances to similarities
top_responses = []
for i, idx in enumerate(indices[0]):
if idx < len(self.response_pool):
top_responses.append((self.response_pool[idx], float(distances[0][i])))
else:
logger.warning(f"FAISS returned invalid index {idx}. Skipping.")
return top_responses
def save_models(self, save_dir: Union[str, Path]):
"""Save models and configuration."""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(save_dir / "config.json", "w") as f:
json.dump(self.config.to_dict(), f, indent=2)
# Save models
self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
# Save tokenizer
self.tokenizer.save_pretrained(save_dir / "tokenizer")
logger.info(f"Models and tokenizer saved to {save_dir}.")
@classmethod
def load_models(cls, load_dir: Union[str, Path]) -> 'RetrievalChatbot':
"""Load saved models and configuration."""
load_dir = Path(load_dir)
# Load config
with open(load_dir / "config.json", "r") as f:
config = ChatbotConfig.from_dict(json.load(f))
# Initialize chatbot
chatbot = cls(config)
# Load models
chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
load_dir / "shared_encoder",
config=config
)
# Load tokenizer
chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
logger.info(f"Models and tokenizer loaded from {load_dir}.")
return chatbot
@staticmethod
def load_training_data(data_path: Union[str, Path], debug_samples: Optional[int] = None) -> List[dict]:
"""
Load training data from a JSON file.
Args:
data_path (Union[str, Path]): Path to the JSON file containing dialogues.
debug_samples (Optional[int]): Number of samples to load for debugging.
Returns:
List[dict]: List of dialogue dictionaries.
"""
logger.info(f"Loading training data from {data_path}...")
data_path = Path(data_path)
if not data_path.exists():
logger.error(f"Data file {data_path} does not exist.")
return []
with open(data_path, 'r', encoding='utf-8') as f:
dialogues = json.load(f)
if debug_samples is not None:
dialogues = dialogues[:debug_samples]
logger.info(f"Debug mode: Limited to {debug_samples} dialogues")
logger.info(f"Loaded {len(dialogues)} dialogues.")
return dialogues
def prepare_dataset(
self,
dialogues: List[dict],
neg_samples: int = 1,
debug_samples: int = None
) -> Tuple[tf.Tensor, tf.Tensor]:
"""
Prepares dataset for multiple-negatives ranking,
but also appends 'hard negative' pairs for each query.
We'll generate:
- (query, positive) as usual
- (query, negative) for each query, using FAISS top-1 approx. negative.
Then, in-batch training sees them as 'two different positives'
for the same query, forcing the model to discriminate them.
"""
logger.info("Preparing in-batch dataset with hard negatives...")
queries, positives = [], []
# Assemble (q, p)
for dialogue in dialogues:
turns = dialogue.get('turns', [])
for i in range(len(turns) - 1):
current_turn = turns[i]
next_turn = turns[i+1]
if (current_turn.get('speaker') == 'user'
and next_turn.get('speaker') == 'assistant'
and 'text' in current_turn
and 'text' in next_turn):
query_text = current_turn['text'].strip()
pos_text = next_turn['text'].strip()
queries.append(query_text)
positives.append(pos_text)
# Debug slicing
if debug_samples is not None:
queries = queries[:debug_samples]
positives = positives[:debug_samples]
logger.info(f"Debug mode: limited to {debug_samples} pairs.")
logger.info(f"Prepared {len(queries)} (query, positive) pairs initially.")
# Find a hard negative from FAISS for each (q, p)
# Create a second 'positive' row => (q, negative). In-batch, it's seen as a different 'positive' row, but is a hard negative.
augmented_queries = []
augmented_positives = []
for q_text, p_text in zip(queries, positives):
neg_texts = self._find_hard_negative(q_text, p_text, top_k=5, neg_samples=neg_samples)
for neg_text in neg_texts:
augmented_queries.append(q_text)
augmented_positives.append(neg_text)
logger.info(f"Found hard negatives for {len(augmented_queries)} queries.")
# Combine them into a single big list -> Original pairs: (q, p) & Hard neg pairs: (q, n)
final_queries = queries + augmented_queries
final_positives = positives + augmented_positives
logger.info(f"Total dataset size after adding hard neg: {len(final_queries)}")
# Tokenize
encoded_queries = self.tokenizer(
final_queries,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
encoded_positives = self.tokenizer(
final_positives,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
q_tensor = encoded_queries['input_ids']
p_tensor = encoded_positives['input_ids']
logger.info("Tokenized and padded sequences for in-batch training + hard negatives.")
return q_tensor, p_tensor
def _find_hard_negative(
self,
query_text: str,
positive_text: str,
top_k: int = 5,
neg_samples: int = 1
) -> List[str]:
"""
Return up to `neg_samples` unique negatives from top_k FAISS results,
excluding the known positive_text.
"""
# Encode the query to get the embedding
query_emb = self.encode_query(query_text)
q_emb_np = query_emb.numpy().astype('float32')
# Normalize for cosine similarity
faiss.normalize_L2(q_emb_np)
# Search in FAISS
distances, indices = self.index.search(q_emb_np, top_k)
# Exclude the actual positive from these results
hard_negatives = []
for idx in indices[0]:
if idx < len(self.response_pool):
candidate = self.response_pool[idx].strip()
if candidate != positive_text.strip():
hard_negatives.append(candidate)
if len(hard_negatives) == neg_samples:
break
return hard_negatives
def train(
self,
q_pad: tf.Tensor,
p_pad: tf.Tensor,
epochs: int = 20,
batch_size: int = 16,
validation_split: float = 0.2,
checkpoint_dir: str = "checkpoints/",
use_lr_schedule: bool = True,
peak_lr: float = 2e-5,
warmup_steps_ratio: float = 0.1,
early_stopping_patience: int = 3,
min_delta: float = 1e-4,
accum_steps: int = 2 # Gradient accumulation steps
):
dataset_size = tf.shape(q_pad)[0].numpy()
val_size = int(dataset_size * validation_split)
train_size = dataset_size - val_size
logger.info(f"Total samples: {dataset_size}")
logger.info(f"Training samples: {train_size}")
logger.info(f"Validation samples: {val_size}")
steps_per_epoch = train_size // batch_size
if train_size % batch_size != 0:
steps_per_epoch += 1
total_steps = steps_per_epoch * epochs
logger.info(f"Total training steps (approx): {total_steps}")
# 1) Set up LR schedule or fixed LR
if use_lr_schedule:
warmup_steps = int(total_steps * warmup_steps_ratio)
lr_schedule = self._get_lr_schedule(
total_steps=total_steps,
peak_lr=peak_lr,
warmup_steps=warmup_steps
)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
logger.info("Using custom learning rate schedule.")
else:
self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
logger.info("Using fixed learning rate.")
# 2) Prepare data splits
train_q = q_pad[:train_size]
train_p = p_pad[:train_size]
val_q = q_pad[train_size:]
val_p = p_pad[train_size:]
train_dataset = (tf.data.Dataset.from_tensor_slices((train_q, train_p))
.shuffle(4096)
.batch(batch_size)
.prefetch(tf.data.AUTOTUNE))
val_dataset = (tf.data.Dataset.from_tensor_slices((val_q, val_p))
.batch(batch_size)
.prefetch(tf.data.AUTOTUNE))
# 3) Checkpoint + manager
checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
# 4) TensorBoard setup
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
log_dir.mkdir(parents=True, exist_ok=True)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = str(log_dir / f"train_{current_time}")
val_log_dir = str(log_dir / f"val_{current_time}")
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
logger.info(f"TensorBoard logs will be saved in {log_dir}")
# 5) Early stopping
best_val_loss = float("inf")
epochs_no_improve = 0
logger.info("Beginning training loop...")
global_step = 0
# Prepare zero-initialized accumulators for your trainable variables
# We'll accumulate gradients across mini-batches, then apply them every accum_steps.
train_vars = self.encoder.pretrained.trainable_variables
accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]
from tqdm import tqdm
for epoch in range(1, epochs + 1):
logger.info(f"\n=== Epoch {epoch}/{epochs} ===")
epoch_loss_avg = tf.keras.metrics.Mean()
step_in_epoch = 0
with tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}") as pbar:
for (q_batch, p_batch) in train_dataset:
step_in_epoch += 1
global_step += 1
with tf.GradientTape() as tape:
q_enc = self.encoder(q_batch, training=True)
p_enc = self.encoder(p_batch, training=True)
sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
bsz = tf.shape(q_enc)[0]
labels = tf.range(bsz, dtype=tf.int32)
loss_value = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=sim_matrix
)
loss_value = tf.reduce_mean(loss_value)
gradients = tape.gradient(loss_value, train_vars)
# -- Accumulate gradients --
for i, grad in enumerate(gradients):
if grad is not None:
accum_grads[i] += tf.cast(grad, tf.float32)
epoch_loss_avg(loss_value)
# -- Apply gradients every 'accum_steps' mini-batches --
if (step_in_epoch % accum_steps) == 0:
# Scale by 1/accum_steps so that each accumulation cycle
# is effectively the same as one “normal” update
for i in range(len(accum_grads)):
accum_grads[i] /= accum_steps
self.optimizer.apply_gradients(
[(accum_grads[i], train_vars[i]) for i in range(len(accum_grads))]
)
# Reset the accumulator
accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]
# Logging / tqdm updates
if use_lr_schedule:
# measure current LR
lr = self.optimizer.learning_rate
if isinstance(lr, tf.keras.optimizers.schedules.LearningRateSchedule):
current_step = tf.cast(self.optimizer.iterations, tf.float32)
current_lr = lr(current_step)
else:
current_lr = lr
current_lr_value = float(current_lr.numpy())
else:
current_lr_value = float(self.optimizer.learning_rate.numpy())
pbar.update(1)
pbar.set_postfix({
"loss": f"{loss_value.numpy():.4f}",
"lr": f"{current_lr_value:.2e}"
})
# TensorBoard logging omitted for brevity...
# -- Handle leftover partial accumulation at epoch end --
leftover = (step_in_epoch % accum_steps)
if leftover != 0:
logger.info(f"Applying leftover accum_grads for partial batch group (size={leftover}).")
# If you want each leftover batch to contribute proportionally:
# multiply by leftover/accum_steps (this ensures leftover
# steps have the same "average" effect as a full accumulation cycle)
for i in range(len(accum_grads)):
accum_grads[i] *= float(leftover) / float(accum_steps)
self.optimizer.apply_gradients(
[(accum_grads[i], train_vars[i]) for i in range(len(accum_grads))]
)
accum_grads = [tf.zeros_like(var, dtype=tf.float32) for var in train_vars]
# Validation
val_loss_avg = tf.keras.metrics.Mean()
for q_val, p_val in val_dataset:
q_enc = self.encoder(q_val, training=False)
p_enc = self.encoder(p_val, training=False)
sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
bs_val = tf.shape(q_enc)[0]
labels_val = tf.range(bs_val, dtype=tf.int32)
loss_val = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels_val,
logits=sim_matrix
)
val_loss_avg(tf.reduce_mean(loss_val))
train_loss = epoch_loss_avg.result().numpy()
val_loss = val_loss_avg.result().numpy()
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# TensorBoard: validation loss
with val_summary_writer.as_default():
tf.summary.scalar("val_loss", val_loss, step=epoch)
# Save checkpoint
manager.save()
# Update history
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
self.history.setdefault('learning_rate', []).append(float(current_lr_value))
# Early stopping
if val_loss < best_val_loss - min_delta:
best_val_loss = val_loss
epochs_no_improve = 0
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
else:
epochs_no_improve += 1
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
if epochs_no_improve >= early_stopping_patience:
logger.info("Early stopping triggered.")
break
logger.info("In-batch training completed!")
def _get_lr_schedule(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
) -> tf.keras.optimizers.schedules.LearningRateSchedule:
"""Create a custom learning rate schedule with warmup and cosine decay."""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
):
super().__init__()
self.total_steps = tf.cast(total_steps, tf.float32)
self.peak_lr = tf.cast(peak_lr, tf.float32)
# Adjust warmup_steps to not exceed half of total_steps
adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
# Calculate and store constants
self.initial_lr = self.peak_lr * 0.1 # Start at 10% of peak
self.min_lr = self.peak_lr * 0.01 # Minimum 1% of peak
logger.info(f"Learning rate schedule initialized:")
logger.info(f" Initial LR: {float(self.initial_lr):.6f}")
logger.info(f" Peak LR: {float(self.peak_lr):.6f}")
logger.info(f" Min LR: {float(self.min_lr):.6f}")
logger.info(f" Warmup steps: {int(self.warmup_steps)}")
logger.info(f" Total steps: {int(self.total_steps)}")
def __call__(self, step):
step = tf.cast(step, tf.float32)
# Warmup phase
warmup_factor = tf.minimum(1.0, step / self.warmup_steps)
warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
# Decay phase
decay_steps = tf.maximum(1.0, self.total_steps - self.warmup_steps)
decay_factor = (step - self.warmup_steps) / decay_steps
decay_factor = tf.minimum(tf.maximum(0.0, decay_factor), 1.0) # Clip to [0,1]
cosine_decay = 0.5 * (1.0 + tf.cos(tf.constant(math.pi) * decay_factor))
decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
# Choose between warmup and decay
final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
# Ensure learning rate is valid
final_lr = tf.maximum(self.min_lr, final_lr)
final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
return final_lr
def get_config(self):
return {
"total_steps": self.total_steps,
"peak_lr": self.peak_lr,
"warmup_steps": self.warmup_steps,
}
return CustomSchedule(total_steps, peak_lr, warmup_steps)
def _cosine_similarity(self, emb1: np.ndarray, emb2: np.ndarray) -> np.ndarray:
"""Compute cosine similarity between two numpy arrays."""
normalized_emb1 = emb1 / np.linalg.norm(emb1, axis=1, keepdims=True)
normalized_emb2 = emb2 / np.linalg.norm(emb2, axis=1, keepdims=True)
return np.dot(normalized_emb1, normalized_emb2.T)
def chat(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]] = None,
quality_checker: Optional['ResponseQualityChecker'] = None,
top_k: int = 5,
) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
"""
Example chat method that always uses cross-encoder re-ranking
if self.reranker is available.
"""
@self.run_on_device
def get_response(self_arg, query_arg): # Add parameters that match decorator's expectations
# 1) Build conversation context string
conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
# 2) Retrieve + cross-encoder re-rank
results = self_arg.retrieve_responses_cross_encoder(
query=conversation_str,
top_k=top_k,
reranker=self_arg.reranker,
summarizer=self_arg.summarizer,
summarize_threshold=512
)
# 3) Handle empty or confidence
if not results:
return (
"I'm sorry, but I couldn't find a relevant response.",
[],
{}
)
if quality_checker:
metrics = quality_checker.check_response_quality(query_arg, results)
if not metrics.get('is_confident', False):
return (
"I need more information to provide a good answer. Could you please clarify?",
results,
metrics
)
return results[0][0], results, metrics
return results[0][0], results, {}
return get_response(self, query)
def _build_conversation_context(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]]
) -> str:
"""Build conversation context with better memory management."""
if not conversation_history:
return f"{self.special_tokens['user']} {query}"
conversation_parts = []
for user_txt, assistant_txt in conversation_history:
conversation_parts.extend([
f"{self.special_tokens['user']} {user_txt}",
f"{self.special_tokens['assistant']} {assistant_txt}"
])
conversation_parts.append(f"{self.special_tokens['user']} {query}")
return "\n".join(conversation_parts)
# def prepare_dataset(
# self,
# dialogues: List[dict],
# debug_samples: int = None
# ) -> Tuple[tf.Tensor, tf.Tensor]:
# """
# Prepares dataset for in-batch negatives:
# Only returns (query, positive) pairs.
# """
# logger.info("Preparing in-batch dataset...")
# queries, positives = [], []
# for dialogue in dialogues:
# turns = dialogue.get('turns', [])
# for i in range(len(turns) - 1):
# current_turn = turns[i]
# next_turn = turns[i+1]
# if (current_turn.get('speaker') == 'user' and
# next_turn.get('speaker') == 'assistant' and
# 'text' in current_turn and
# 'text' in next_turn):
# query = current_turn['text'].strip()
# positive = next_turn['text'].strip()
# queries.append(query)
# positives.append(positive)
# # Optional debug slicing
# if debug_samples is not None:
# queries = queries[:debug_samples]
# positives = positives[:debug_samples]
# logger.info(f"Debug mode: limited to {debug_samples} pairs.")
# logger.info(f"Prepared {len(queries)} (query, positive) pairs.")
# # Tokenize queries
# encoded_queries = self.tokenizer(
# queries,
# padding='max_length',
# truncation=True,
# max_length=self.config.max_sequence_length,
# return_tensors='tf'
# )
# # Tokenize positives
# encoded_positives = self.tokenizer(
# positives,
# padding='max_length',
# truncation=True,
# max_length=self.config.max_sequence_length,
# return_tensors='tf'
# )
# q_tensor = encoded_queries['input_ids']
# p_tensor = encoded_positives['input_ids']
# logger.info("Tokenized and padded sequences for in-batch training.")
# return q_tensor, p_tensor
# def train(
# self,
# q_pad: tf.Tensor,
# p_pad: tf.Tensor,
# epochs: int = 20,
# batch_size: int = 16,
# validation_split: float = 0.2,
# checkpoint_dir: str = "checkpoints/",
# use_lr_schedule: bool = True,
# peak_lr: float = 2e-5,
# warmup_steps_ratio: float = 0.1,
# early_stopping_patience: int = 3,
# min_delta: float = 1e-4
# ):
# dataset_size = tf.shape(q_pad)[0].numpy()
# val_size = int(dataset_size * validation_split)
# train_size = dataset_size - val_size
# logger.info(f"Total samples: {dataset_size}")
# logger.info(f"Training samples: {train_size}")
# logger.info(f"Validation samples: {val_size}")
# steps_per_epoch = train_size // batch_size
# if train_size % batch_size != 0:
# steps_per_epoch += 1
# total_steps = steps_per_epoch * epochs
# logger.info(f"Total training steps (approx): {total_steps}")
# # 1) Set up LR schedule or fixed LR
# if use_lr_schedule:
# warmup_steps = int(total_steps * warmup_steps_ratio)
# lr_schedule = self._get_lr_schedule(
# total_steps=total_steps,
# peak_lr=peak_lr,
# warmup_steps=warmup_steps
# )
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
# logger.info("Using custom learning rate schedule.")
# else:
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
# logger.info("Using fixed learning rate.")
# # 2) Prepare data splits
# train_q = q_pad[:train_size]
# train_p = p_pad[:train_size]
# val_q = q_pad[train_size:]
# val_p = p_pad[train_size:]
# train_dataset = tf.data.Dataset.from_tensor_slices((train_q, train_p))
# train_dataset = train_dataset.shuffle(buffer_size=4096).batch(batch_size)
# val_dataset = tf.data.Dataset.from_tensor_slices((val_q, val_p))
# val_dataset = val_dataset.batch(batch_size)
# # 3) Checkpoint + manager
# checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
# manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
# # 4) TensorBoard setup
# log_dir = Path(checkpoint_dir) / "tensorboard_logs"
# log_dir.mkdir(parents=True, exist_ok=True)
# current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# train_log_dir = str(log_dir / f"train_{current_time}")
# val_log_dir = str(log_dir / f"val_{current_time}")
# train_summary_writer = tf.summary.create_file_writer(train_log_dir)
# val_summary_writer = tf.summary.create_file_writer(val_log_dir)
# logger.info(f"TensorBoard logs will be saved in {log_dir}")
# # 5) Early stopping
# best_val_loss = float("inf")
# epochs_no_improve = 0
# logger.info("Beginning training loop...")
# global_step = 0
# from tqdm import tqdm
# for epoch in range(1, epochs + 1):
# logger.info(f"\n=== Epoch {epoch}/{epochs} ===")
# epoch_loss_avg = tf.keras.metrics.Mean()
# # Training loop
# with tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}") as pbar:
# for (q_batch, p_batch) in train_dataset:
# global_step += 1
# # Train step
# batch_loss = self._train_step(q_batch, p_batch)
# epoch_loss_avg(batch_loss)
# # Get current LR
# if use_lr_schedule:
# lr = self.optimizer.learning_rate
# if isinstance(lr, tf.keras.optimizers.schedules.LearningRateSchedule):
# # Get the current step
# current_step = tf.cast(self.optimizer.iterations, tf.float32)
# # Compute the current learning rate
# current_lr = lr(current_step)
# else:
# # If learning_rate is not a schedule, use it directly
# current_lr = lr
# # Convert to float for logging
# current_lr_value = float(current_lr.numpy())
# else:
# # If using fixed learning rate
# current_lr_value = float(self.optimizer.learning_rate.numpy())
# # Update tqdm
# pbar.update(1)
# pbar.set_postfix({
# "loss": f"{batch_loss.numpy():.4f}",
# "lr": f"{current_lr_value:.2e}"
# })
# # TensorBoard: log train metrics per step
# with train_summary_writer.as_default():
# tf.summary.scalar("loss", batch_loss, step=global_step)
# tf.summary.scalar("learning_rate", current_lr_value, step=global_step)
# # Validation
# val_loss_avg = tf.keras.metrics.Mean()
# for q_val, p_val in val_dataset:
# q_enc = self.encoder(q_val, training=False)
# p_enc = self.encoder(p_val, training=False)
# sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
# bs_val = tf.shape(q_enc)[0]
# labels_val = tf.range(bs_val, dtype=tf.int32)
# loss_val = tf.nn.sparse_softmax_cross_entropy_with_logits(
# labels=labels_val,
# logits=sim_matrix
# )
# val_loss_avg(tf.reduce_mean(loss_val))
# train_loss = epoch_loss_avg.result().numpy()
# val_loss = val_loss_avg.result().numpy()
# logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# # TensorBoard: validation loss
# with val_summary_writer.as_default():
# tf.summary.scalar("val_loss", val_loss, step=epoch)
# # Save checkpoint
# manager.save()
# # Update history
# self.history['train_loss'].append(train_loss)
# self.history['val_loss'].append(val_loss)
# self.history.setdefault('learning_rate', []).append(float(current_lr_value))
# # Early stopping
# if val_loss < best_val_loss - min_delta:
# best_val_loss = val_loss
# epochs_no_improve = 0
# logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
# else:
# epochs_no_improve += 1
# logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
# if epochs_no_improve >= early_stopping_patience:
# logger.info("Early stopping triggered.")
# break
# logger.info("In-batch training completed!")
# @tf.function
# def _train_step(self, q_batch, p_batch):
# """
# Single training step using in-batch negatives.
# q_batch: (batch_size, seq_len) int32 input_ids for queries
# p_batch: (batch_size, seq_len) int32 input_ids for positives
# """
# with tf.GradientTape() as tape:
# # Encode queries and positives
# q_enc = self.encoder(q_batch, training=True) # [B, emb_dim]
# p_enc = self.encoder(p_batch, training=True) # [B, emb_dim]
# # Compute similarity matrix: (B, B) = q_enc * p_enc^T
# # If embeddings are L2-normalized, this is cosine similarity
# sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True) # [B, B]
# # Labels are just the diagonal indices
# batch_size = tf.shape(q_enc)[0]
# labels = tf.range(batch_size, dtype=tf.int32) # [0..B-1]
# # Softmax cross-entropy
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
# labels=labels,
# logits=sim_matrix
# )
# loss = tf.reduce_mean(loss)
# # Compute gradients for the pretrained DistilBERT variables only
# train_vars = self.encoder.pretrained.trainable_variables
# gradients = tape.gradient(loss, train_vars)
# # Remove any None grads (in case some layers are frozen)
# grads_and_vars = [(g, v) for g, v in zip(gradients, train_vars) if g is not None]
# if grads_and_vars:
# self.optimizer.apply_gradients(grads_and_vars)
# return loss |