Spaces:
Running
on
Zero
Running
on
Zero
Clean up
Browse files
app.py
CHANGED
|
@@ -1,11 +1,8 @@
|
|
| 1 |
import math
|
| 2 |
-
import os
|
| 3 |
import random
|
| 4 |
|
| 5 |
import cv2
|
| 6 |
-
import diffusers
|
| 7 |
import gradio as gr
|
| 8 |
-
import insightface
|
| 9 |
import numpy as np
|
| 10 |
import PIL
|
| 11 |
import spaces
|
|
@@ -40,8 +37,8 @@ app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvide
|
|
| 40 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 41 |
|
| 42 |
# Path to InstantID models
|
| 43 |
-
face_adapter =
|
| 44 |
-
controlnet_path =
|
| 45 |
|
| 46 |
# Load pipeline
|
| 47 |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
|
@@ -221,7 +218,7 @@ def generate_image(
|
|
| 221 |
progress=gr.Progress(track_tqdm=True),
|
| 222 |
):
|
| 223 |
if face_image is None:
|
| 224 |
-
raise gr.Error(
|
| 225 |
|
| 226 |
if prompt is None:
|
| 227 |
prompt = "a person"
|
|
@@ -238,7 +235,7 @@ def generate_image(
|
|
| 238 |
face_info = app.get(face_image_cv2)
|
| 239 |
|
| 240 |
if len(face_info) == 0:
|
| 241 |
-
raise gr.Error(
|
| 242 |
|
| 243 |
face_info = sorted(
|
| 244 |
face_info,
|
|
@@ -257,7 +254,7 @@ def generate_image(
|
|
| 257 |
face_info = app.get(pose_image_cv2)
|
| 258 |
|
| 259 |
if len(face_info) == 0:
|
| 260 |
-
raise gr.Error(
|
| 261 |
|
| 262 |
face_info = face_info[-1]
|
| 263 |
face_kps = draw_kps(pose_image, face_info["kps"])
|
|
@@ -484,6 +481,5 @@ with gr.Blocks(css=css) as demo:
|
|
| 484 |
|
| 485 |
gr.Markdown(article)
|
| 486 |
|
| 487 |
-
|
| 488 |
demo.queue(api_open=False)
|
| 489 |
demo.launch()
|
|
|
|
| 1 |
import math
|
|
|
|
| 2 |
import random
|
| 3 |
|
| 4 |
import cv2
|
|
|
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import PIL
|
| 8 |
import spaces
|
|
|
|
| 37 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 38 |
|
| 39 |
# Path to InstantID models
|
| 40 |
+
face_adapter = "./checkpoints/ip-adapter.bin"
|
| 41 |
+
controlnet_path = "./checkpoints/ControlNetModel"
|
| 42 |
|
| 43 |
# Load pipeline
|
| 44 |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
|
|
|
| 218 |
progress=gr.Progress(track_tqdm=True),
|
| 219 |
):
|
| 220 |
if face_image is None:
|
| 221 |
+
raise gr.Error("Cannot find any input face image! Please upload the face image")
|
| 222 |
|
| 223 |
if prompt is None:
|
| 224 |
prompt = "a person"
|
|
|
|
| 235 |
face_info = app.get(face_image_cv2)
|
| 236 |
|
| 237 |
if len(face_info) == 0:
|
| 238 |
+
raise gr.Error("Cannot find any face in the image! Please upload another person image")
|
| 239 |
|
| 240 |
face_info = sorted(
|
| 241 |
face_info,
|
|
|
|
| 254 |
face_info = app.get(pose_image_cv2)
|
| 255 |
|
| 256 |
if len(face_info) == 0:
|
| 257 |
+
raise gr.Error("Cannot find any face in the reference image! Please upload another person image")
|
| 258 |
|
| 259 |
face_info = face_info[-1]
|
| 260 |
face_kps = draw_kps(pose_image, face_info["kps"])
|
|
|
|
| 481 |
|
| 482 |
gr.Markdown(article)
|
| 483 |
|
|
|
|
| 484 |
demo.queue(api_open=False)
|
| 485 |
demo.launch()
|