Spaces:
Running
on
Zero
Running
on
Zero
Apply formatter
Browse files
app.py
CHANGED
|
@@ -1,25 +1,22 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import cv2
|
| 3 |
import math
|
| 4 |
-
import
|
| 5 |
-
import torch
|
| 6 |
import random
|
| 7 |
-
import numpy as np
|
| 8 |
-
|
| 9 |
-
import PIL
|
| 10 |
-
from PIL import Image
|
| 11 |
|
|
|
|
| 12 |
import diffusers
|
| 13 |
-
|
| 14 |
-
from diffusers.models import ControlNetModel
|
| 15 |
-
|
| 16 |
import insightface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
from insightface.app import FaceAnalysis
|
|
|
|
| 18 |
|
| 19 |
-
from style_template import styles
|
| 20 |
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
|
| 21 |
-
|
| 22 |
-
import gradio as gr
|
| 23 |
|
| 24 |
# global variable
|
| 25 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -29,22 +26,27 @@ DEFAULT_STYLE_NAME = "Watercolor"
|
|
| 29 |
|
| 30 |
# download checkpoints
|
| 31 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 32 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
| 33 |
-
hf_hub_download(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
| 35 |
|
| 36 |
# Load face encoder
|
| 37 |
-
app = FaceAnalysis(name=
|
| 38 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 39 |
|
| 40 |
# Path to InstantID models
|
| 41 |
-
face_adapter = f
|
| 42 |
-
controlnet_path = f
|
| 43 |
|
| 44 |
# Load pipeline
|
| 45 |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 46 |
|
| 47 |
-
base_model_path =
|
| 48 |
|
| 49 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
| 50 |
base_model_path,
|
|
@@ -55,54 +57,68 @@ pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
|
| 55 |
)
|
| 56 |
pipe.cuda()
|
| 57 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 58 |
-
pipe.image_proj_model.to(
|
| 59 |
-
pipe.unet.to(
|
|
|
|
| 60 |
|
| 61 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 62 |
if randomize_seed:
|
| 63 |
seed = random.randint(0, MAX_SEED)
|
| 64 |
return seed
|
| 65 |
|
|
|
|
| 66 |
def swap_to_gallery(images):
|
| 67 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
def upload_example_to_gallery(images, prompt, style, negative_prompt):
|
| 70 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
def remove_back_to_files():
|
| 73 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 74 |
|
|
|
|
| 75 |
def remove_tips():
|
| 76 |
return gr.update(visible=False)
|
| 77 |
|
|
|
|
| 78 |
def get_example():
|
| 79 |
case = [
|
| 80 |
[
|
| 81 |
-
[
|
| 82 |
"a man",
|
| 83 |
"Snow",
|
| 84 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 85 |
],
|
| 86 |
[
|
| 87 |
-
[
|
| 88 |
"a man",
|
| 89 |
"Mars",
|
| 90 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 91 |
],
|
| 92 |
[
|
| 93 |
-
[
|
| 94 |
"a man",
|
| 95 |
"Jungle",
|
| 96 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
| 97 |
],
|
| 98 |
[
|
| 99 |
-
[
|
| 100 |
"a man",
|
| 101 |
"Neon",
|
| 102 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 103 |
],
|
| 104 |
[
|
| 105 |
-
[
|
| 106 |
"a man",
|
| 107 |
"Vibrant Color",
|
| 108 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
|
@@ -110,16 +126,20 @@ def get_example():
|
|
| 110 |
]
|
| 111 |
return case
|
| 112 |
|
|
|
|
| 113 |
def run_for_examples(face_files, prompt, style, negative_prompt):
|
| 114 |
return generate_image(face_files, None, prompt, negative_prompt, style, True, 30, 0.8, 0.8, 5, 42)
|
| 115 |
|
|
|
|
| 116 |
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
| 117 |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 118 |
|
|
|
|
| 119 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
| 120 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 121 |
|
| 122 |
-
|
|
|
|
| 123 |
stickwidth = 4
|
| 124 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
| 125 |
kps = np.array(kps)
|
|
@@ -135,7 +155,9 @@ def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,2
|
|
| 135 |
y = kps[index][:, 1]
|
| 136 |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
| 137 |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
| 138 |
-
polygon = cv2.ellipse2Poly(
|
|
|
|
|
|
|
| 139 |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
| 140 |
out_img = (out_img * 0.6).astype(np.uint8)
|
| 141 |
|
|
@@ -147,89 +169,115 @@ def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,2
|
|
| 147 |
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
| 148 |
return out_img_pil
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
| 174 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 175 |
-
return p.replace("{prompt}", positive), n +
|
| 176 |
|
| 177 |
-
@spaces.GPU
|
| 178 |
-
def generate_image(face_image, pose_image, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
if face_image is None:
|
| 181 |
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
|
| 182 |
-
|
| 183 |
if prompt is None:
|
| 184 |
prompt = "a person"
|
| 185 |
-
|
| 186 |
# apply the style template
|
| 187 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 188 |
-
|
| 189 |
face_image = load_image(face_image[0])
|
| 190 |
face_image = resize_img(face_image)
|
| 191 |
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
| 192 |
height, width, _ = face_image_cv2.shape
|
| 193 |
-
|
| 194 |
# Extract face features
|
| 195 |
face_info = app.get(face_image_cv2)
|
| 196 |
-
|
| 197 |
if len(face_info) == 0:
|
| 198 |
raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
|
| 199 |
-
|
| 200 |
-
face_info = sorted(
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
if pose_image is not None:
|
| 205 |
pose_image = load_image(pose_image[0])
|
| 206 |
pose_image = resize_img(pose_image)
|
| 207 |
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
| 208 |
-
|
| 209 |
face_info = app.get(pose_image_cv2)
|
| 210 |
-
|
| 211 |
if len(face_info) == 0:
|
| 212 |
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
|
| 213 |
-
|
| 214 |
face_info = face_info[-1]
|
| 215 |
-
face_kps = draw_kps(pose_image, face_info[
|
| 216 |
-
|
| 217 |
width, height = face_kps.size
|
| 218 |
-
|
| 219 |
if enhance_face_region:
|
| 220 |
control_mask = np.zeros([height, width, 3])
|
| 221 |
-
x1, y1, x2, y2 = face_info[
|
| 222 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
| 223 |
control_mask[y1:y2, x1:x2] = 255
|
| 224 |
control_mask = Image.fromarray(control_mask.astype(np.uint8))
|
| 225 |
else:
|
| 226 |
control_mask = None
|
| 227 |
-
|
| 228 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 229 |
-
|
| 230 |
print("Start inference...")
|
| 231 |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
|
| 232 |
-
|
| 233 |
pipe.set_ip_adapter_scale(adapter_strength_ratio)
|
| 234 |
images = pipe(
|
| 235 |
prompt=prompt,
|
|
@@ -242,11 +290,12 @@ def generate_image(face_image, pose_image, prompt, negative_prompt, style_name,
|
|
| 242 |
guidance_scale=guidance_scale,
|
| 243 |
height=height,
|
| 244 |
width=width,
|
| 245 |
-
generator=generator
|
| 246 |
).images
|
| 247 |
|
| 248 |
return images, gr.update(visible=True)
|
| 249 |
|
|
|
|
| 250 |
### Description
|
| 251 |
title = r"""
|
| 252 |
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
|
|
@@ -289,46 +338,44 @@ tips = r"""
|
|
| 289 |
4. Find a good base model always makes a difference.
|
| 290 |
"""
|
| 291 |
|
| 292 |
-
css =
|
| 293 |
.gradio-container {width: 85% !important}
|
| 294 |
-
|
| 295 |
with gr.Blocks(css=css) as demo:
|
| 296 |
-
|
| 297 |
# description
|
| 298 |
gr.Markdown(title)
|
| 299 |
gr.Markdown(description)
|
| 300 |
|
| 301 |
with gr.Row():
|
| 302 |
with gr.Column():
|
| 303 |
-
|
| 304 |
# upload face image
|
| 305 |
-
face_files = gr.Files(
|
| 306 |
-
label="Upload a photo of your face",
|
| 307 |
-
file_types=["image"]
|
| 308 |
-
)
|
| 309 |
uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
| 310 |
with gr.Column(visible=False) as clear_button_face:
|
| 311 |
-
remove_and_reupload_faces = gr.ClearButton(
|
| 312 |
-
|
|
|
|
|
|
|
| 313 |
# optional: upload a reference pose image
|
| 314 |
-
pose_files = gr.Files(
|
| 315 |
-
label="Upload a reference pose image (optional)",
|
| 316 |
-
file_types=["image"]
|
| 317 |
-
)
|
| 318 |
uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
| 319 |
with gr.Column(visible=False) as clear_button_pose:
|
| 320 |
-
remove_and_reupload_poses = gr.ClearButton(
|
| 321 |
-
|
|
|
|
|
|
|
| 322 |
# prompt
|
| 323 |
-
prompt = gr.Textbox(
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
| 328 |
submit = gr.Button("Submit", variant="primary")
|
| 329 |
-
|
| 330 |
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
| 331 |
-
|
| 332 |
# strength
|
| 333 |
identitynet_strength_ratio = gr.Slider(
|
| 334 |
label="IdentityNet strength (for fedility)",
|
|
@@ -344,14 +391,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 344 |
step=0.05,
|
| 345 |
value=0.80,
|
| 346 |
)
|
| 347 |
-
|
| 348 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 349 |
negative_prompt = gr.Textbox(
|
| 350 |
-
label="Negative Prompt",
|
| 351 |
placeholder="low quality",
|
| 352 |
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 353 |
)
|
| 354 |
-
num_steps = gr.Slider(
|
| 355 |
label="Number of sample steps",
|
| 356 |
minimum=20,
|
| 357 |
maximum=100,
|
|
@@ -377,17 +424,31 @@ with gr.Blocks(css=css) as demo:
|
|
| 377 |
|
| 378 |
with gr.Column():
|
| 379 |
gallery = gr.Gallery(label="Generated Images")
|
| 380 |
-
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips
|
| 381 |
|
| 382 |
-
face_files.upload(
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
-
remove_and_reupload_faces.click(
|
| 386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
submit.click(
|
| 389 |
fn=remove_tips,
|
| 390 |
-
outputs=usage_tips,
|
| 391 |
).then(
|
| 392 |
fn=randomize_seed_fn,
|
| 393 |
inputs=[seed, randomize_seed],
|
|
@@ -396,21 +457,33 @@ with gr.Blocks(css=css) as demo:
|
|
| 396 |
api_name=False,
|
| 397 |
).then(
|
| 398 |
fn=generate_image,
|
| 399 |
-
inputs=[
|
| 400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
)
|
| 402 |
-
|
| 403 |
gr.Examples(
|
| 404 |
examples=get_example(),
|
| 405 |
inputs=[face_files, prompt, style, negative_prompt],
|
| 406 |
run_on_click=True,
|
| 407 |
fn=upload_example_to_gallery,
|
| 408 |
outputs=[uploaded_faces, clear_button_face, face_files],
|
| 409 |
-
cache_examples=True
|
| 410 |
)
|
| 411 |
-
|
| 412 |
gr.Markdown(article)
|
| 413 |
|
| 414 |
|
| 415 |
demo.queue(api_open=False)
|
| 416 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import math
|
| 2 |
+
import os
|
|
|
|
| 3 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
import cv2
|
| 6 |
import diffusers
|
| 7 |
+
import gradio as gr
|
|
|
|
|
|
|
| 8 |
import insightface
|
| 9 |
+
import numpy as np
|
| 10 |
+
import PIL
|
| 11 |
+
import spaces
|
| 12 |
+
import torch
|
| 13 |
+
from diffusers.models import ControlNetModel
|
| 14 |
+
from diffusers.utils import load_image
|
| 15 |
from insightface.app import FaceAnalysis
|
| 16 |
+
from PIL import Image
|
| 17 |
|
|
|
|
| 18 |
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
|
| 19 |
+
from style_template import styles
|
|
|
|
| 20 |
|
| 21 |
# global variable
|
| 22 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 26 |
|
| 27 |
# download checkpoints
|
| 28 |
from huggingface_hub import hf_hub_download
|
| 29 |
+
|
| 30 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
| 31 |
+
hf_hub_download(
|
| 32 |
+
repo_id="InstantX/InstantID",
|
| 33 |
+
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
|
| 34 |
+
local_dir="./checkpoints",
|
| 35 |
+
)
|
| 36 |
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
| 37 |
|
| 38 |
# Load face encoder
|
| 39 |
+
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
|
| 40 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 41 |
|
| 42 |
# Path to InstantID models
|
| 43 |
+
face_adapter = f"./checkpoints/ip-adapter.bin"
|
| 44 |
+
controlnet_path = f"./checkpoints/ControlNetModel"
|
| 45 |
|
| 46 |
# Load pipeline
|
| 47 |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 48 |
|
| 49 |
+
base_model_path = "wangqixun/YamerMIX_v8"
|
| 50 |
|
| 51 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
| 52 |
base_model_path,
|
|
|
|
| 57 |
)
|
| 58 |
pipe.cuda()
|
| 59 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 60 |
+
pipe.image_proj_model.to("cuda")
|
| 61 |
+
pipe.unet.to("cuda")
|
| 62 |
+
|
| 63 |
|
| 64 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 65 |
if randomize_seed:
|
| 66 |
seed = random.randint(0, MAX_SEED)
|
| 67 |
return seed
|
| 68 |
|
| 69 |
+
|
| 70 |
def swap_to_gallery(images):
|
| 71 |
+
return (
|
| 72 |
+
gr.update(value=images, visible=True),
|
| 73 |
+
gr.update(visible=True),
|
| 74 |
+
gr.update(visible=False),
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
|
| 78 |
def upload_example_to_gallery(images, prompt, style, negative_prompt):
|
| 79 |
+
return (
|
| 80 |
+
gr.update(value=images, visible=True),
|
| 81 |
+
gr.update(visible=True),
|
| 82 |
+
gr.update(visible=False),
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
|
| 86 |
def remove_back_to_files():
|
| 87 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 88 |
|
| 89 |
+
|
| 90 |
def remove_tips():
|
| 91 |
return gr.update(visible=False)
|
| 92 |
|
| 93 |
+
|
| 94 |
def get_example():
|
| 95 |
case = [
|
| 96 |
[
|
| 97 |
+
["./examples/yann-lecun_resize.jpg"],
|
| 98 |
"a man",
|
| 99 |
"Snow",
|
| 100 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 101 |
],
|
| 102 |
[
|
| 103 |
+
["./examples/musk_resize.jpeg"],
|
| 104 |
"a man",
|
| 105 |
"Mars",
|
| 106 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 107 |
],
|
| 108 |
[
|
| 109 |
+
["./examples/sam_resize.png"],
|
| 110 |
"a man",
|
| 111 |
"Jungle",
|
| 112 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
| 113 |
],
|
| 114 |
[
|
| 115 |
+
["./examples/schmidhuber_resize.png"],
|
| 116 |
"a man",
|
| 117 |
"Neon",
|
| 118 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 119 |
],
|
| 120 |
[
|
| 121 |
+
["./examples/kaifu_resize.png"],
|
| 122 |
"a man",
|
| 123 |
"Vibrant Color",
|
| 124 |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
|
|
|
| 126 |
]
|
| 127 |
return case
|
| 128 |
|
| 129 |
+
|
| 130 |
def run_for_examples(face_files, prompt, style, negative_prompt):
|
| 131 |
return generate_image(face_files, None, prompt, negative_prompt, style, True, 30, 0.8, 0.8, 5, 42)
|
| 132 |
|
| 133 |
+
|
| 134 |
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
| 135 |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 136 |
|
| 137 |
+
|
| 138 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
| 139 |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 140 |
|
| 141 |
+
|
| 142 |
+
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
| 143 |
stickwidth = 4
|
| 144 |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
| 145 |
kps = np.array(kps)
|
|
|
|
| 155 |
y = kps[index][:, 1]
|
| 156 |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
| 157 |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
| 158 |
+
polygon = cv2.ellipse2Poly(
|
| 159 |
+
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
| 160 |
+
)
|
| 161 |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
| 162 |
out_img = (out_img * 0.6).astype(np.uint8)
|
| 163 |
|
|
|
|
| 169 |
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
| 170 |
return out_img_pil
|
| 171 |
|
| 172 |
+
|
| 173 |
+
def resize_img(
|
| 174 |
+
input_image,
|
| 175 |
+
max_side=1280,
|
| 176 |
+
min_side=1024,
|
| 177 |
+
size=None,
|
| 178 |
+
pad_to_max_side=False,
|
| 179 |
+
mode=PIL.Image.BILINEAR,
|
| 180 |
+
base_pixel_number=64,
|
| 181 |
+
):
|
| 182 |
+
w, h = input_image.size
|
| 183 |
+
if size is not None:
|
| 184 |
+
w_resize_new, h_resize_new = size
|
| 185 |
+
else:
|
| 186 |
+
ratio = min_side / min(h, w)
|
| 187 |
+
w, h = round(ratio * w), round(ratio * h)
|
| 188 |
+
ratio = max_side / max(h, w)
|
| 189 |
+
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
|
| 190 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
| 191 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
| 192 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
| 193 |
+
|
| 194 |
+
if pad_to_max_side:
|
| 195 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
| 196 |
+
offset_x = (max_side - w_resize_new) // 2
|
| 197 |
+
offset_y = (max_side - h_resize_new) // 2
|
| 198 |
+
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = np.array(input_image)
|
| 199 |
+
input_image = Image.fromarray(res)
|
| 200 |
+
return input_image
|
| 201 |
+
|
| 202 |
|
| 203 |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
| 204 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 205 |
+
return p.replace("{prompt}", positive), n + " " + negative
|
| 206 |
|
|
|
|
|
|
|
| 207 |
|
| 208 |
+
@spaces.GPU
|
| 209 |
+
def generate_image(
|
| 210 |
+
face_image,
|
| 211 |
+
pose_image,
|
| 212 |
+
prompt,
|
| 213 |
+
negative_prompt,
|
| 214 |
+
style_name,
|
| 215 |
+
enhance_face_region,
|
| 216 |
+
num_steps,
|
| 217 |
+
identitynet_strength_ratio,
|
| 218 |
+
adapter_strength_ratio,
|
| 219 |
+
guidance_scale,
|
| 220 |
+
seed,
|
| 221 |
+
progress=gr.Progress(track_tqdm=True),
|
| 222 |
+
):
|
| 223 |
if face_image is None:
|
| 224 |
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
|
| 225 |
+
|
| 226 |
if prompt is None:
|
| 227 |
prompt = "a person"
|
| 228 |
+
|
| 229 |
# apply the style template
|
| 230 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 231 |
+
|
| 232 |
face_image = load_image(face_image[0])
|
| 233 |
face_image = resize_img(face_image)
|
| 234 |
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
| 235 |
height, width, _ = face_image_cv2.shape
|
| 236 |
+
|
| 237 |
# Extract face features
|
| 238 |
face_info = app.get(face_image_cv2)
|
| 239 |
+
|
| 240 |
if len(face_info) == 0:
|
| 241 |
raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
|
| 242 |
+
|
| 243 |
+
face_info = sorted(
|
| 244 |
+
face_info,
|
| 245 |
+
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
|
| 246 |
+
)[
|
| 247 |
+
-1
|
| 248 |
+
] # only use the maximum face
|
| 249 |
+
face_emb = face_info["embedding"]
|
| 250 |
+
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
|
| 251 |
+
|
| 252 |
if pose_image is not None:
|
| 253 |
pose_image = load_image(pose_image[0])
|
| 254 |
pose_image = resize_img(pose_image)
|
| 255 |
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
| 256 |
+
|
| 257 |
face_info = app.get(pose_image_cv2)
|
| 258 |
+
|
| 259 |
if len(face_info) == 0:
|
| 260 |
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
|
| 261 |
+
|
| 262 |
face_info = face_info[-1]
|
| 263 |
+
face_kps = draw_kps(pose_image, face_info["kps"])
|
| 264 |
+
|
| 265 |
width, height = face_kps.size
|
| 266 |
+
|
| 267 |
if enhance_face_region:
|
| 268 |
control_mask = np.zeros([height, width, 3])
|
| 269 |
+
x1, y1, x2, y2 = face_info["bbox"]
|
| 270 |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
| 271 |
control_mask[y1:y2, x1:x2] = 255
|
| 272 |
control_mask = Image.fromarray(control_mask.astype(np.uint8))
|
| 273 |
else:
|
| 274 |
control_mask = None
|
| 275 |
+
|
| 276 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 277 |
+
|
| 278 |
print("Start inference...")
|
| 279 |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
|
| 280 |
+
|
| 281 |
pipe.set_ip_adapter_scale(adapter_strength_ratio)
|
| 282 |
images = pipe(
|
| 283 |
prompt=prompt,
|
|
|
|
| 290 |
guidance_scale=guidance_scale,
|
| 291 |
height=height,
|
| 292 |
width=width,
|
| 293 |
+
generator=generator,
|
| 294 |
).images
|
| 295 |
|
| 296 |
return images, gr.update(visible=True)
|
| 297 |
|
| 298 |
+
|
| 299 |
### Description
|
| 300 |
title = r"""
|
| 301 |
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
|
|
|
|
| 338 |
4. Find a good base model always makes a difference.
|
| 339 |
"""
|
| 340 |
|
| 341 |
+
css = """
|
| 342 |
.gradio-container {width: 85% !important}
|
| 343 |
+
"""
|
| 344 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 345 |
# description
|
| 346 |
gr.Markdown(title)
|
| 347 |
gr.Markdown(description)
|
| 348 |
|
| 349 |
with gr.Row():
|
| 350 |
with gr.Column():
|
|
|
|
| 351 |
# upload face image
|
| 352 |
+
face_files = gr.Files(label="Upload a photo of your face", file_types=["image"])
|
|
|
|
|
|
|
|
|
|
| 353 |
uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
| 354 |
with gr.Column(visible=False) as clear_button_face:
|
| 355 |
+
remove_and_reupload_faces = gr.ClearButton(
|
| 356 |
+
value="Remove and upload new ones", components=face_files, size="sm"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
# optional: upload a reference pose image
|
| 360 |
+
pose_files = gr.Files(label="Upload a reference pose image (optional)", file_types=["image"])
|
|
|
|
|
|
|
|
|
|
| 361 |
uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
| 362 |
with gr.Column(visible=False) as clear_button_pose:
|
| 363 |
+
remove_and_reupload_poses = gr.ClearButton(
|
| 364 |
+
value="Remove and upload new ones", components=pose_files, size="sm"
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
# prompt
|
| 368 |
+
prompt = gr.Textbox(
|
| 369 |
+
label="Prompt",
|
| 370 |
+
info="Give simple prompt is enough to achieve good face fedility",
|
| 371 |
+
placeholder="A photo of a person",
|
| 372 |
+
value="",
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
submit = gr.Button("Submit", variant="primary")
|
| 376 |
+
|
| 377 |
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
| 378 |
+
|
| 379 |
# strength
|
| 380 |
identitynet_strength_ratio = gr.Slider(
|
| 381 |
label="IdentityNet strength (for fedility)",
|
|
|
|
| 391 |
step=0.05,
|
| 392 |
value=0.80,
|
| 393 |
)
|
| 394 |
+
|
| 395 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 396 |
negative_prompt = gr.Textbox(
|
| 397 |
+
label="Negative Prompt",
|
| 398 |
placeholder="low quality",
|
| 399 |
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
| 400 |
)
|
| 401 |
+
num_steps = gr.Slider(
|
| 402 |
label="Number of sample steps",
|
| 403 |
minimum=20,
|
| 404 |
maximum=100,
|
|
|
|
| 424 |
|
| 425 |
with gr.Column():
|
| 426 |
gallery = gr.Gallery(label="Generated Images")
|
| 427 |
+
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips, visible=False)
|
| 428 |
|
| 429 |
+
face_files.upload(
|
| 430 |
+
fn=swap_to_gallery,
|
| 431 |
+
inputs=face_files,
|
| 432 |
+
outputs=[uploaded_faces, clear_button_face, face_files],
|
| 433 |
+
)
|
| 434 |
+
pose_files.upload(
|
| 435 |
+
fn=swap_to_gallery,
|
| 436 |
+
inputs=pose_files,
|
| 437 |
+
outputs=[uploaded_poses, clear_button_pose, pose_files],
|
| 438 |
+
)
|
| 439 |
|
| 440 |
+
remove_and_reupload_faces.click(
|
| 441 |
+
fn=remove_back_to_files,
|
| 442 |
+
outputs=[uploaded_faces, clear_button_face, face_files],
|
| 443 |
+
)
|
| 444 |
+
remove_and_reupload_poses.click(
|
| 445 |
+
fn=remove_back_to_files,
|
| 446 |
+
outputs=[uploaded_poses, clear_button_pose, pose_files],
|
| 447 |
+
)
|
| 448 |
|
| 449 |
submit.click(
|
| 450 |
fn=remove_tips,
|
| 451 |
+
outputs=usage_tips,
|
| 452 |
).then(
|
| 453 |
fn=randomize_seed_fn,
|
| 454 |
inputs=[seed, randomize_seed],
|
|
|
|
| 457 |
api_name=False,
|
| 458 |
).then(
|
| 459 |
fn=generate_image,
|
| 460 |
+
inputs=[
|
| 461 |
+
face_files,
|
| 462 |
+
pose_files,
|
| 463 |
+
prompt,
|
| 464 |
+
negative_prompt,
|
| 465 |
+
style,
|
| 466 |
+
enhance_face_region,
|
| 467 |
+
num_steps,
|
| 468 |
+
identitynet_strength_ratio,
|
| 469 |
+
adapter_strength_ratio,
|
| 470 |
+
guidance_scale,
|
| 471 |
+
seed,
|
| 472 |
+
],
|
| 473 |
+
outputs=[gallery, usage_tips],
|
| 474 |
)
|
| 475 |
+
|
| 476 |
gr.Examples(
|
| 477 |
examples=get_example(),
|
| 478 |
inputs=[face_files, prompt, style, negative_prompt],
|
| 479 |
run_on_click=True,
|
| 480 |
fn=upload_example_to_gallery,
|
| 481 |
outputs=[uploaded_faces, clear_button_face, face_files],
|
| 482 |
+
cache_examples=True,
|
| 483 |
)
|
| 484 |
+
|
| 485 |
gr.Markdown(article)
|
| 486 |
|
| 487 |
|
| 488 |
demo.queue(api_open=False)
|
| 489 |
+
demo.launch()
|