Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
# HF bloom --> gguf conversion | |
from __future__ import annotations | |
import argparse | |
import json | |
import os | |
import re | |
import struct | |
import sys | |
from pathlib import Path | |
from typing import Any | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer # type: ignore[import] | |
if 'NO_LOCAL_GGUF' not in os.environ: | |
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) | |
import gguf | |
def count_model_parts(dir_model: Path) -> int: | |
num_parts = 0 | |
for filename in os.listdir(dir_model): | |
if filename.startswith("pytorch_model-"): | |
num_parts += 1 | |
if num_parts > 0: | |
print("gguf: found " + str(num_parts) + " model parts") | |
return num_parts | |
# Supported Models: | |
# https://huggingface.co/bigscience/bloom-1b7 | |
# https://huggingface.co/bigscience/bloom-3b | |
# https://huggingface.co/bigscience/bloom-7b1 | |
# https://huggingface.co/Langboat/bloom-1b4-zh | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file") | |
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | |
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | |
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") | |
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1) | |
return parser.parse_args() | |
args = parse_args() | |
dir_model = args.model | |
ftype = args.ftype | |
if not dir_model.is_dir(): | |
print(f'Error: {args.model} is not a directory', file = sys.stderr) | |
sys.exit(1) | |
# possible tensor data types | |
# ftype == 0 -> float32 | |
# ftype == 1 -> float16 | |
# map from ftype to string | |
ftype_str = ["f32", "f16"] | |
if args.outfile is not None: | |
fname_out = args.outfile | |
else: | |
# output in the same directory as the model by default | |
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' | |
print("gguf: loading model "+dir_model.name) | |
with open(dir_model / "config.json", "r", encoding="utf-8") as f: | |
hparams = json.load(f) | |
if hparams["architectures"][0] != "BloomForCausalLM": | |
print("Model architecture not supported: " + hparams["architectures"][0]) | |
sys.exit(1) | |
# get number of model parts | |
num_parts = count_model_parts(dir_model) | |
ARCH=gguf.MODEL_ARCH.BLOOM | |
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) | |
print("gguf: get model metadata") | |
block_count = hparams["n_layer"] | |
gguf_writer.add_name("Bloom") | |
n_embed = hparams.get("hidden_size", hparams.get("n_embed")) | |
n_head = hparams.get("n_head", hparams.get("num_attention_heads")) | |
gguf_writer.add_context_length(hparams.get("seq_length", n_embed)) | |
gguf_writer.add_embedding_length(n_embed) | |
gguf_writer.add_feed_forward_length(4 * n_embed) | |
gguf_writer.add_block_count(block_count) | |
gguf_writer.add_head_count(n_head) | |
gguf_writer.add_head_count_kv(n_head) | |
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) | |
gguf_writer.add_file_type(ftype) | |
# TOKENIZATION | |
print("gguf: get tokenizer metadata") | |
tokens: list[bytearray] = [] | |
scores: list[float] = [] | |
toktypes: list[int] = [] | |
# gpt2 tokenizer | |
gguf_writer.add_tokenizer_model("gpt2") | |
print("gguf: get gpt2 tokenizer vocab") | |
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py | |
tokenizer = AutoTokenizer.from_pretrained(dir_model) | |
# The number of tokens in tokenizer.json can differ from the expected vocab size. | |
# This causes downstream issues with mismatched tensor sizes when running the inference | |
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) | |
assert max(tokenizer.vocab.values()) < vocab_size | |
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} | |
for i in range(vocab_size): | |
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") | |
scores.append(0.0) # dummy | |
toktypes.append(gguf.TokenType.NORMAL) | |
gguf_writer.add_token_list(tokens) | |
gguf_writer.add_token_scores(scores) | |
gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) | |
special_vocab.add_to_gguf(gguf_writer) | |
# TENSORS | |
tensor_map = gguf.get_tensor_name_map(ARCH, block_count) | |
# params for qkv transform | |
n_head_kv = hparams.get("n_head_kv", n_head) | |
head_dim = n_embed // n_head | |
# tensor info | |
print("gguf: get tensor metadata") | |
if num_parts == 0: | |
part_names = iter(("pytorch_model.bin",)) | |
else: | |
part_names = ( | |
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | |
) | |
for part_name in part_names: | |
if args.vocab_only: | |
break | |
print("gguf: loading model part '" + part_name + "'") | |
model_part = torch.load(dir_model / part_name, map_location="cpu") | |
has_lm_head = True | |
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys(): | |
has_lm_head = False | |
for original_name in model_part.keys(): | |
data = model_part[original_name] | |
name = re.sub(r'transformer\.', '', original_name) | |
old_dtype = data.dtype | |
# convert any unsupported data types to float32 | |
if data.dtype != torch.float16 and data.dtype != torch.float32: | |
data = data.to(torch.float32) | |
data = data.squeeze().numpy() | |
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): | |
# Map bloom-style qkv_linear to gpt-style qkv_linear | |
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa | |
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa | |
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed)) | |
data = np.concatenate( | |
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)), | |
qkv_weights[:, 1, :, :].reshape((-1, n_embed)), | |
qkv_weights[:, 2, :, :].reshape((-1, n_embed))), | |
axis=0 | |
) | |
print("re-format attention.linear_qkv.weight") | |
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): | |
qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) | |
data = np.concatenate( | |
(qkv_bias[:, 0, :].reshape((n_embed,)), | |
qkv_bias[:, 1, :].reshape((n_embed,)), | |
qkv_bias[:, 2, :].reshape((n_embed,))), | |
axis=0 | |
) | |
print("re-format attention.linear_qkv.bias") | |
# map tensor names | |
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) | |
if new_name is None: | |
print("Can not map tensor '" + name + "'") | |
sys.exit() | |
n_dims = len(data.shape) | |
data_dtype = data.dtype | |
# if f32 desired, convert any float16 to float32 | |
if ftype == 0 and data_dtype == np.float16: | |
data = data.astype(np.float32) | |
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | |
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | |
data = data.astype(np.float32) | |
# if f16 desired, convert any float32 2-dim weight tensors to float16 | |
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | |
data = data.astype(np.float16) | |
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | |
gguf_writer.add_tensor(new_name, data) | |
if not has_lm_head and name == "word_embeddings.weight": | |
gguf_writer.add_tensor("output.weight", data) | |
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa | |
print("gguf: write header") | |
gguf_writer.write_header_to_file() | |
print("gguf: write metadata") | |
gguf_writer.write_kv_data_to_file() | |
if not args.vocab_only: | |
print("gguf: write tensors") | |
gguf_writer.write_tensors_to_file() | |
gguf_writer.close() | |
print(f"gguf: model successfully exported to '{fname_out}'") | |
print("") | |