Spaces:
Build error
Build error
File size: 8,305 Bytes
57c742e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
#!/usr/bin/env python3
# HF bloom --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import re
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
# Supported Models:
# https://huggingface.co/bigscience/bloom-1b7
# https://huggingface.co/bigscience/bloom-3b
# https://huggingface.co/bigscience/bloom-7b1
# https://huggingface.co/Langboat/bloom-1b4-zh
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "BloomForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.BLOOM
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name("Bloom")
n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
gguf_writer.add_embedding_length(n_embed)
gguf_writer.add_feed_forward_length(4 * n_embed)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(n_head)
gguf_writer.add_head_count_kv(n_head)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
# params for qkv transform
n_head_kv = hparams.get("n_head_kv", n_head)
head_dim = n_embed // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
has_lm_head = True
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
has_lm_head = False
for original_name in model_part.keys():
data = model_part[original_name]
name = re.sub(r'transformer\.', '', original_name)
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
data = np.concatenate(
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
axis=0
)
print("re-format attention.linear_qkv.weight")
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
data = np.concatenate(
(qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,))),
axis=0
)
print("re-format attention.linear_qkv.bias")
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
if not has_lm_head and name == "word_embeddings.weight":
gguf_writer.add_tensor("output.weight", data)
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")
|