add option for new user provided concepts

#4
by linoyts HF Staff - opened
Files changed (1) hide show
  1. app.py +89 -9
app.py CHANGED
@@ -10,6 +10,7 @@ import open_clip
10
  from huggingface_hub import hf_hub_download
11
  from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
12
  from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
 
13
  import spaces
14
  import random
15
 
@@ -32,6 +33,8 @@ ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckp
32
  # Initialize CLIP model
33
  clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
34
  clip_model.to(device)
 
 
35
 
36
  CONCEPTS_MAP={
37
  "age": "age_descriptions.npy",
@@ -120,6 +123,12 @@ def process_images(
120
  scale=1.0,
121
  seed=420,
122
  num_inference_steps=50,
 
 
 
 
 
 
123
  ):
124
  """Process the base image and concept images to generate modified images"""
125
  # Process base image
@@ -129,23 +138,37 @@ def process_images(
129
  # Process concept images
130
  concept_images = []
131
  concept_descriptions = []
 
 
132
 
133
  # for demo purposes we allow for up to 3 different concepts and corresponding concept images
134
  if concept_image1 is not None:
135
  concept_images.append(concept_image1)
136
- concept_descriptions.append(CONCEPTS_MAP[concept_name1])
 
 
 
 
137
  else:
138
  return None, "Please upload at least one concept image"
139
 
140
  # Add second concept (optional)
141
  if concept_image2 is not None:
142
  concept_images.append(concept_image2)
143
- concept_descriptions.append(CONCEPTS_MAP[concept_name2])
 
 
 
 
144
 
145
  # Add third concept (optional)
146
  if concept_image3 is not None:
147
  concept_images.append(concept_image3)
148
- concept_descriptions.append(CONCEPTS_MAP[concept_name3])
 
 
 
 
149
 
150
  # Get all ranks
151
  ranks = [rank1]
@@ -159,12 +182,15 @@ def process_images(
159
  projection_matrices = []
160
  # for the demo, we assume 1 concept image per concept
161
  # for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
162
- for i, concept_name in enumerate(concept_descriptions):
163
  img_pil = Image.fromarray(concept_images[i]).convert("RGB")
164
  concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
165
- embeds_path = f"./IP_Composer/text_embeddings/{concept_name}"
166
- with open(embeds_path, "rb") as f:
167
- all_embeds_in = np.load(f)
 
 
 
168
 
169
  projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
170
  projection_matrices.append(projection_matrix)
@@ -193,6 +219,13 @@ def process_images(
193
 
194
  return modified_images[0]
195
 
 
 
 
 
 
 
 
196
  def process_and_display(
197
  base_image,
198
  concept_image1, concept_name1="age",
@@ -236,7 +269,12 @@ following the algorithm proposed in [*IP-Composer: Semantic Composition of Visua
236
 
237
  [[project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)]
238
  """)
239
-
 
 
 
 
 
240
  with gr.Row():
241
  with gr.Column():
242
  base_image = gr.Image(label="Base Image (Required)", type="numpy")
@@ -244,15 +282,19 @@ following the algorithm proposed in [*IP-Composer: Semantic Composition of Visua
244
  with gr.Row():
245
  with gr.Group():
246
  concept_image1 = gr.Image(label="Concept Image 1", type="numpy")
 
247
  concept_name1 = gr.Dropdown(concept_options, label="concept 1", value=None, info="concept type")
248
 
249
  with gr.Tab("concept 2 - optional"):
250
  with gr.Group():
251
  concept_image2 = gr.Image(label="Concept Image 2", type="numpy")
 
252
  concept_name2 = gr.Dropdown(concept_options, label="concept 2", value=None, info="concept type")
 
253
  with gr.Tab("concept 3 - optional"):
254
  with gr.Group():
255
  concept_image3 = gr.Image(label="Concept Image 3", type="numpy")
 
256
  concept_name3 = gr.Dropdown(concept_options, label="concept 3", value= None, info="concept type")
257
 
258
 
@@ -284,6 +326,38 @@ following the algorithm proposed in [*IP-Composer: Semantic Composition of Visua
284
  fn=generate_examples,
285
  cache_examples=False
286
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287
 
288
  submit_btn.click(
289
  fn=randomize_seed_fn,
@@ -296,7 +370,13 @@ following the algorithm proposed in [*IP-Composer: Semantic Composition of Visua
296
  concept_image2, concept_name2,
297
  concept_image3, concept_name3,
298
  rank1, rank2, rank3,
299
- prompt, scale, seed, num_inference_steps
 
 
 
 
 
 
300
  ],
301
  outputs=[output_image]
302
  )
 
10
  from huggingface_hub import hf_hub_download
11
  from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
12
  from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
13
+ from IP_Compoeser.generate_text_embeddings import load_descriptions, generate_embeddings
14
  import spaces
15
  import random
16
 
 
33
  # Initialize CLIP model
34
  clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
35
  clip_model.to(device)
36
+ tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
37
+
38
 
39
  CONCEPTS_MAP={
40
  "age": "age_descriptions.npy",
 
123
  scale=1.0,
124
  seed=420,
125
  num_inference_steps=50,
126
+ concpet_from_file_1 = None,
127
+ concpet_from_file_2 = None,
128
+ concpet_from_file_3 = None,
129
+ use_concpet_from_file_1 = False,
130
+ use_concpet_from_file_2 = False,
131
+ use_concpet_from_file_3 = False
132
  ):
133
  """Process the base image and concept images to generate modified images"""
134
  # Process base image
 
138
  # Process concept images
139
  concept_images = []
140
  concept_descriptions = []
141
+
142
+ skip_load_concept =[False,False, False]
143
 
144
  # for demo purposes we allow for up to 3 different concepts and corresponding concept images
145
  if concept_image1 is not None:
146
  concept_images.append(concept_image1)
147
+ if use_concpet_from_file_1 and concpet_from_file_1: # if concept is new from user input
148
+ concept_descriptions.append(use_concpet_from_file_1)
149
+ skip_load_concept[0] = True
150
+ else:
151
+ concept_descriptions.append(CONCEPTS_MAP[concept_name1])
152
  else:
153
  return None, "Please upload at least one concept image"
154
 
155
  # Add second concept (optional)
156
  if concept_image2 is not None:
157
  concept_images.append(concept_image2)
158
+ if use_concpet_from_file_2 and concpet_from_file_2: # if concept is new from user input
159
+ concept_descriptions.append(use_concpet_from_file_2)
160
+ skip_load_concept[1] = True
161
+ else:
162
+ concept_descriptions.append(CONCEPTS_MAP[concept_name2])
163
 
164
  # Add third concept (optional)
165
  if concept_image3 is not None:
166
  concept_images.append(concept_image3)
167
+ if use_concpet_from_file_3 and concpet_from_file_3: # if concept is new from user input
168
+ concept_descriptions.append(use_concpet_from_file_3)
169
+ skip_load_concept[2] = True
170
+ else:
171
+ concept_descriptions.append(CONCEPTS_MAP[concept_name3])
172
 
173
  # Get all ranks
174
  ranks = [rank1]
 
182
  projection_matrices = []
183
  # for the demo, we assume 1 concept image per concept
184
  # for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
185
+ for i, concept in enumerate(concept_descriptions):
186
  img_pil = Image.fromarray(concept_images[i]).convert("RGB")
187
  concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
188
+ if skip_load_concept[i]: # if concept is new from user input
189
+ all_embeds_in = concept
190
+ else:
191
+ embeds_path = f"./IP_Composer/text_embeddings/{concept}"
192
+ with open(embeds_path, "rb") as f:
193
+ all_embeds_in = np.load(f)
194
 
195
  projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
196
  projection_matrices.append(projection_matrix)
 
219
 
220
  return modified_images[0]
221
 
222
+ @spaces.GPU
223
+ def get_text_embeddings(concept_file):
224
+ descriptions = load_descriptions(concept_file)
225
+ embeddings = generate_embeddings(descriptions, model, tokenizer, device, batch_size=100)
226
+ return embeddings, True
227
+
228
+
229
  def process_and_display(
230
  base_image,
231
  concept_image1, concept_name1="age",
 
269
 
270
  [[project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)]
271
  """)
272
+ concpet_from_file_1 = gr.State()
273
+ concpet_from_file_2 = gr.State()
274
+ concpet_from_file_3 = gr.State()
275
+ use_concpet_from_file_1 = gr.State()
276
+ use_concpet_from_file_2 = gr.State()
277
+ use_concpet_from_file_3 = gr.State()
278
  with gr.Row():
279
  with gr.Column():
280
  base_image = gr.Image(label="Base Image (Required)", type="numpy")
 
282
  with gr.Row():
283
  with gr.Group():
284
  concept_image1 = gr.Image(label="Concept Image 1", type="numpy")
285
+ concept_file_1 = gradio.File(label="concept variations", file_types="text")
286
  concept_name1 = gr.Dropdown(concept_options, label="concept 1", value=None, info="concept type")
287
 
288
  with gr.Tab("concept 2 - optional"):
289
  with gr.Group():
290
  concept_image2 = gr.Image(label="Concept Image 2", type="numpy")
291
+ concept_file_2 = gradio.File(label="concept variations", file_types="text")
292
  concept_name2 = gr.Dropdown(concept_options, label="concept 2", value=None, info="concept type")
293
+
294
  with gr.Tab("concept 3 - optional"):
295
  with gr.Group():
296
  concept_image3 = gr.Image(label="Concept Image 3", type="numpy")
297
+ concept_file_3 = gradio.File(label="concept variations", file_types="text")
298
  concept_name3 = gr.Dropdown(concept_options, label="concept 3", value= None, info="concept type")
299
 
300
 
 
326
  fn=generate_examples,
327
  cache_examples=False
328
  )
329
+
330
+ concept_file_1.upload(
331
+ fn=get_text_embeddings,
332
+ inputs=[concept_file_1],
333
+ outputs=[concpet_from_file_1, use_concpet_from_file_1]
334
+ )
335
+ concept_file_2.upload(
336
+ fn=get_text_embeddings,
337
+ inputs=[concept_file_2],
338
+ outputs=[concpet_from_file_2, use_concpet_from_file_2]
339
+ )
340
+ concept_file_3.upload(
341
+ fn=get_text_embeddings,
342
+ inputs=[concept_file_3],
343
+ outputs=[concpet_from_file_3, use_concpet_from_file_3]
344
+ )
345
+
346
+ concept_file_1.delete(
347
+ fn=lambda x: False,
348
+ inputs=[concept_file_1],
349
+ outputs=[use_concpet_from_file_1]
350
+ )
351
+ concept_file_2.delete(
352
+ fn=lambda x: False,
353
+ inputs=[concept_file_2],
354
+ outputs=[use_concpet_from_file_2]
355
+ )
356
+ concept_file_3.delete(
357
+ fn=lambda x: False,
358
+ inputs=[concept_file_3],
359
+ outputs=[use_concpet_from_file_3]
360
+ )
361
 
362
  submit_btn.click(
363
  fn=randomize_seed_fn,
 
370
  concept_image2, concept_name2,
371
  concept_image3, concept_name3,
372
  rank1, rank2, rank3,
373
+ prompt, scale, seed, num_inference_steps,
374
+ concpet_from_file_1,
375
+ concpet_from_file_2,
376
+ concpet_from_file_3,
377
+ use_concpet_from_file_1,
378
+ use_concpet_from_file_2,
379
+ use_concpet_from_file_3
380
  ],
381
  outputs=[output_image]
382
  )