ola13's picture
add title
d0b26e9
import json
import math
import os
import random
import uuid
from datetime import datetime
import gradio as gr
import jsonlines
import pyarrow as pa
import s3fs
from datasets import Dataset
from huggingface_hub import HfApi
S3 = s3fs.S3FileSystem(anon=False, key=os.getenv("AWS_ACCESS_KEY_ID"), secret=os.getenv("AWS_SECRET_ACCESS_KEY"))
BASE_S3_DIR = "s3://geclm-datasets/samples/"
LABELLING_COMPLETE_TEXT = (
"Completed the labelling the sample for the {} dataset. Please consider labelling other datasets."
)
DATASETS = [
"c4",
"bigcode_python_code",
"bigcode_python_github_issues",
"bigcode_python_jupyter_markdowned_clean_dedup",
"books3",
"gutenberg_raw",
"reddit_threaded",
"enwiki_data",
"s2orc_dedup",
"stackexchange2",
"commoncrawl",
]
def get_parquet_lines(dataset, sample_size=1000):
s3_paths = S3.glob(BASE_S3_DIR + dataset + "/*")
if len(s3_paths) == 0:
raise FileNotFoundError(f"Nothing found at {path}")
print("Number of parquet files", len(s3_paths))
s3_path = random.choice(s3_paths)
print("Reading", s3_path)
lines = []
with S3.open(s3_path) as f:
pf = pa.parquet.ParquetFile(f)
for ix_row_group in range(pf.metadata.num_row_groups):
# We load dataset by row group - 1000 rows at a time
# using open_input_stream would return bytes per bytes not row per row
table = pf.read_row_group(ix_row_group)
lines.extend(table.to_pylist())
random.shuffle(lines)
return lines[:sample_size]
def get_local_lines(dataset):
lines = []
with jsonlines.open("data/{}_examples_with_stats.json".format(dataset), "r") as f:
for line in f:
lines.append(line)
return lines
def line_generator(lines_dict, dataset):
for line in lines_dict[dataset]:
yield line
# local_lines = {dataset: get_local_lines(dataset) for dataset in DATASETS}
# line_generators_local = {dataset: line_generator(local_lines, dataset) for dataset in DATASETS}
# Parallelize the below ?
s3_lines = {dataset: get_parquet_lines(dataset) for dataset in DATASETS}
line_generators_s3 = {dataset: line_generator(s3_lines, dataset) for dataset in DATASETS}
def send_report(sample, dataset, reason, annotator, campaign):
text_col = "text"
if text_col not in sample:
text_col = "content"
text = sample[text_col]
sample.pop(text_col)
if "record_timestamp" in sample:
sample.pop("record_timestamp")
sample_id = ""
if "id" not in sample:
if "title" in sample:
sample_id = sample["title"]
else:
sample_id = sample["id"]
with jsonlines.open("report.jsonl", "w") as f:
f.write(
{
"dataset": dataset,
"docid": sample_id,
"text": text,
"metadata": json.dumps(sample),
"reason": reason,
"annotator": annotator,
"campaign": campaign,
"timestamp": str(datetime.now()),
}
)
api = HfApi()
api.upload_file(
path_or_fileobj="report.jsonl",
path_in_repo="report-{}.jsonl".format(uuid.uuid4()),
repo_id="HuggingFaceGECLM/data_feedback",
repo_type="dataset",
token=os.environ.get("geclm_token"),
)
def get_title_and_text_for_line(next_line):
text_col = "text"
if text_col not in next_line:
text_col = "content"
text = next_line[text_col]
label = ""
if "title" in next_line:
label = next_line["title"]
if "url" in next_line:
label += " | " + next_line["url"]
elif "metadata" in next_line:
if next_line["metadata"] is not None:
print(next_line["metadata"])
if isinstance(next_line["metadata"], list) and len(next_line["metadata"]) > 0:
label = next_line["metadata"][0]
elif isinstance(next_line["metadata"], str):
metadata = json.loads(next_line["metadata"])
if "document_url" in metadata:
label = metadata["document_url"]
elif "url" in next_line:
label = next_line["url"]
return text, label
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
current_sample_state = gr.State(dict())
description = gr.Markdown(
value="""GecLM annotations. All annotations are recorded in the [data_feedback](https://huggingface.co/datasets/HuggingFaceGECLM/data_feedback) dataset.
""",
)
with gr.Row():
annotator = gr.Textbox(
lines=1,
max_lines=1,
placeholder="Optionally provide your name here if you'd like it to be recorded.",
label="Annotator",
)
campaign = gr.Textbox(
lines=1,
max_lines=1,
placeholder="Optionally provide the name of the annotation campagin for ease of filtering the reports.",
label="Annotation campaign",
)
with gr.Row():
dataset = gr.Dropdown(
choices=DATASETS,
value="Pick a dataset below",
label="Dataset",
)
with gr.Row():
reason_txt = gr.Textbox(
label="Flagging reason",
placeholder="Provide the reason for flagging if you think the sample is bad.",
visible=False,
)
with gr.Row():
bad_btn = gr.Button("Bad ❌", visible=False)
good_btn = gr.Button("Next βœ…", visible=False)
with gr.Row():
text = gr.Textbox(visible=False, label="Datapoint", lines=500, max_lines=500)
def get_next_line(dataset):
try:
next_line = next(line_generators_s3[dataset])
text, label = get_title_and_text_for_line(next_line)
except StopIteration:
text = LABELLING_COMPLETE_TEXT.format(dataset)
next_line = text
return [
gr.update(
value=text,
visible=True,
label=label,
),
next_line,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
]
def report_bad_line_and_next(current_sample, dataset, reason, annotator, campaign):
if current_sample != LABELLING_COMPLETE_TEXT.format(dataset):
send_report(current_sample, dataset, reason, annotator, campaign)
try:
next_line = next(line_generators_s3[dataset])
text, label = get_title_and_text_for_line(next_line)
except StopIteration:
text = LABELLING_COMPLETE_TEXT.format(dataset)
next_line = text
return [
gr.update(
value=text,
visible=True,
label=label,
),
gr.update(
value="",
placeholder="Provide the reason for flagging if you think the sample is bad.",
),
next_line,
]
good_btn.click(
get_next_line,
inputs=dataset,
outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],
)
dataset.change(
get_next_line,
inputs=dataset,
outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],
)
bad_btn.click(
report_bad_line_and_next,
inputs=[current_sample_state, dataset, reason_txt, annotator, campaign],
outputs=[text, reason_txt, current_sample_state],
)
demo.launch(enable_queue=False, debug=True)