File size: 7,947 Bytes
d0b26e9
eff02e0
de3513e
eff02e0
de3513e
 
eff02e0
 
 
 
 
 
de3513e
 
eff02e0
de3513e
eff02e0
c92549e
 
 
eff02e0
 
 
de3513e
 
eff02e0
de3513e
eff02e0
de3513e
eff02e0
 
 
 
de3513e
 
 
c92549e
eff02e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c92549e
 
eff02e0
c92549e
 
eff02e0
de3513e
 
e16ff40
c92549e
 
 
 
 
d0b26e9
 
de3513e
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b26e9
de3513e
 
e16ff40
de3513e
 
 
a4a0058
de3513e
 
 
 
 
 
 
 
 
 
d0b26e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e16ff40
 
de3513e
 
 
 
 
 
d0b26e9
 
 
 
de3513e
 
 
 
e16ff40
de3513e
 
e16ff40
 
 
 
 
 
de3513e
 
eff02e0
 
 
de3513e
 
 
 
 
 
 
 
a322536
 
de3513e
c92549e
 
 
 
 
d0b26e9
c92549e
 
 
de3513e
d0b26e9
 
 
 
 
de3513e
 
 
 
 
 
c92549e
 
 
 
 
 
d0b26e9
c92549e
 
 
de3513e
d0b26e9
 
 
 
 
de3513e
 
 
 
 
 
 
 
c92549e
de3513e
 
 
 
c92549e
de3513e
 
 
 
c92549e
e16ff40
de3513e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import json
import math
import os
import random
import uuid
from datetime import datetime

import gradio as gr
import jsonlines
import pyarrow as pa
import s3fs
from datasets import Dataset
from huggingface_hub import HfApi

S3 = s3fs.S3FileSystem(anon=False, key=os.getenv("AWS_ACCESS_KEY_ID"), secret=os.getenv("AWS_SECRET_ACCESS_KEY"))

BASE_S3_DIR = "s3://geclm-datasets/samples/"
LABELLING_COMPLETE_TEXT = (
    "Completed the labelling the sample for the {} dataset. Please consider labelling other datasets."
)

DATASETS = [
    "c4",
    "bigcode_python_code",
    "bigcode_python_github_issues",
    "bigcode_python_jupyter_markdowned_clean_dedup",
    "books3",
    "gutenberg_raw",
    "reddit_threaded",
    "enwiki_data",
    "s2orc_dedup",
    "stackexchange2",
    "commoncrawl",
]


def get_parquet_lines(dataset, sample_size=1000):
    s3_paths = S3.glob(BASE_S3_DIR + dataset + "/*")

    if len(s3_paths) == 0:
        raise FileNotFoundError(f"Nothing found at {path}")

    print("Number of parquet files", len(s3_paths))
    s3_path = random.choice(s3_paths)
    print("Reading", s3_path)
    lines = []

    with S3.open(s3_path) as f:
        pf = pa.parquet.ParquetFile(f)
        for ix_row_group in range(pf.metadata.num_row_groups):
            # We load dataset by row group - 1000 rows at a time
            # using open_input_stream would return bytes per bytes not row per row
            table = pf.read_row_group(ix_row_group)
            lines.extend(table.to_pylist())

    random.shuffle(lines)
    return lines[:sample_size]


def get_local_lines(dataset):
    lines = []
    with jsonlines.open("data/{}_examples_with_stats.json".format(dataset), "r") as f:
        for line in f:
            lines.append(line)
    return lines


def line_generator(lines_dict, dataset):
    for line in lines_dict[dataset]:
        yield line


# local_lines = {dataset: get_local_lines(dataset) for dataset in DATASETS}
# line_generators_local = {dataset: line_generator(local_lines, dataset) for dataset in DATASETS}

# Parallelize the below ?
s3_lines = {dataset: get_parquet_lines(dataset) for dataset in DATASETS}
line_generators_s3 = {dataset: line_generator(s3_lines, dataset) for dataset in DATASETS}


def send_report(sample, dataset, reason, annotator, campaign):
    text_col = "text"
    if text_col not in sample:
        text_col = "content"
    text = sample[text_col]
    sample.pop(text_col)
    if "record_timestamp" in sample:
        sample.pop("record_timestamp")

    sample_id = ""
    if "id" not in sample:
        if "title" in sample:
            sample_id = sample["title"]
    else:
        sample_id = sample["id"]

    with jsonlines.open("report.jsonl", "w") as f:
        f.write(
            {
                "dataset": dataset,
                "docid": sample_id,
                "text": text,
                "metadata": json.dumps(sample),
                "reason": reason,
                "annotator": annotator,
                "campaign": campaign,
                "timestamp": str(datetime.now()),
            }
        )

    api = HfApi()
    api.upload_file(
        path_or_fileobj="report.jsonl",
        path_in_repo="report-{}.jsonl".format(uuid.uuid4()),
        repo_id="HuggingFaceGECLM/data_feedback",
        repo_type="dataset",
        token=os.environ.get("geclm_token"),
    )


def get_title_and_text_for_line(next_line):
    text_col = "text"
    if text_col not in next_line:
        text_col = "content"
    text = next_line[text_col]

    label = ""
    if "title" in next_line:
        label = next_line["title"]
        if "url" in next_line:
            label += " | " + next_line["url"]
    elif "metadata" in next_line:
        if next_line["metadata"] is not None:
            print(next_line["metadata"])
            if isinstance(next_line["metadata"], list) and len(next_line["metadata"]) > 0:
                label = next_line["metadata"][0]
            elif isinstance(next_line["metadata"], str):
                metadata = json.loads(next_line["metadata"])
                if "document_url" in metadata:
                    label = metadata["document_url"]
    elif "url" in next_line:
        label = next_line["url"]

    return text, label


if __name__ == "__main__":
    demo = gr.Blocks()

    with demo:
        current_sample_state = gr.State(dict())

        description = gr.Markdown(
            value="""GecLM annotations. All annotations are recorded in the [data_feedback](https://huggingface.co/datasets/HuggingFaceGECLM/data_feedback) dataset.
""",
        )
        with gr.Row():
            annotator = gr.Textbox(
                lines=1,
                max_lines=1,
                placeholder="Optionally provide your name here if you'd like it to be recorded.",
                label="Annotator",
            )
            campaign = gr.Textbox(
                lines=1,
                max_lines=1,
                placeholder="Optionally provide the name of the annotation campagin for ease of filtering the reports.",
                label="Annotation campaign",
            )
        with gr.Row():
            dataset = gr.Dropdown(
                choices=DATASETS,
                value="Pick a dataset below",
                label="Dataset",
            )
        with gr.Row():
            reason_txt = gr.Textbox(
                label="Flagging reason",
                placeholder="Provide the reason for flagging if you think the sample is bad.",
                visible=False,
            )
        with gr.Row():
            bad_btn = gr.Button("Bad ❌", visible=False)
            good_btn = gr.Button("Next ✅", visible=False)
        with gr.Row():
            text = gr.Textbox(visible=False, label="Datapoint", lines=500, max_lines=500)

        def get_next_line(dataset):
            try:
                next_line = next(line_generators_s3[dataset])
                text, label = get_title_and_text_for_line(next_line)
            except StopIteration:
                text = LABELLING_COMPLETE_TEXT.format(dataset)
                next_line = text
            return [
                gr.update(
                    value=text,
                    visible=True,
                    label=label,
                ),
                next_line,
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=True),
            ]

        def report_bad_line_and_next(current_sample, dataset, reason, annotator, campaign):
            if current_sample != LABELLING_COMPLETE_TEXT.format(dataset):
                send_report(current_sample, dataset, reason, annotator, campaign)

            try:
                next_line = next(line_generators_s3[dataset])
                text, label = get_title_and_text_for_line(next_line)
            except StopIteration:
                text = LABELLING_COMPLETE_TEXT.format(dataset)
                next_line = text
            return [
                gr.update(
                    value=text,
                    visible=True,
                    label=label,
                ),
                gr.update(
                    value="",
                    placeholder="Provide the reason for flagging if you think the sample is bad.",
                ),
                next_line,
            ]

        good_btn.click(
            get_next_line,
            inputs=dataset,
            outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],
        )
        dataset.change(
            get_next_line,
            inputs=dataset,
            outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],
        )
        bad_btn.click(
            report_bad_line_and_next,
            inputs=[current_sample_state, dataset, reason_txt, annotator, campaign],
            outputs=[text, reason_txt, current_sample_state],
        )

    demo.launch(enable_queue=False, debug=True)