Spaces:
Runtime error
Runtime error
Update README.md
#1
by
xphillyx
- opened
- .DS_Store +0 -0
- README.md +2 -2
- app.py +30 -168
- lora_models.json +2 -7
- readme.md +2 -2
- requirements.txt +1 -4
.DS_Store
DELETED
|
Binary file (6.15 kB)
|
|
|
README.md
CHANGED
|
@@ -4,9 +4,9 @@ emoji: 🏆
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
---
|
| 11 |
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.14.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
---
|
| 11 |
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,106 +1,57 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import os
|
|
|
|
| 6 |
import random
|
| 7 |
import json
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
import torch
|
| 10 |
from torchvision import transforms
|
| 11 |
-
import zipfile
|
| 12 |
|
| 13 |
from diffusers import FluxFillPipeline, AutoencoderKL
|
| 14 |
from PIL import Image
|
| 15 |
-
|
| 16 |
|
| 17 |
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
MAX_IMAGE_SIZE = 2048
|
| 19 |
|
| 20 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
-
# sam = LangSAM(model_type="sam2-hiera-large").to(device)
|
| 22 |
-
|
| 23 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# def download_model(model_name, model_path):
|
| 29 |
-
# print(f"Downloading model: {model_name} from {model_path}")
|
| 30 |
-
# try:
|
| 31 |
-
# pipe.load_lora_weights(model_path)
|
| 32 |
-
# print(f"Successfully downloaded model: {model_name}")
|
| 33 |
-
# except Exception as e:
|
| 34 |
-
# print(f"Failed to download model: {model_name}. Error: {e}")
|
| 35 |
-
|
| 36 |
-
# # Iterate through the models and download each one
|
| 37 |
-
# for model_name, model_path in lora_models.items():
|
| 38 |
-
# download_model(model_name, model_path)
|
| 39 |
-
|
| 40 |
-
# lora_models["None"] = None
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# FIXED_DIMENSION = 1024
|
| 50 |
|
| 51 |
-
|
| 52 |
-
# original_aspect_ratio = original_width / original_height
|
| 53 |
-
|
| 54 |
-
# # Determine which dimension to fix
|
| 55 |
-
# if original_aspect_ratio > 1: # Wider than tall
|
| 56 |
-
# width = FIXED_DIMENSION
|
| 57 |
-
# height = round(FIXED_DIMENSION / original_aspect_ratio)
|
| 58 |
-
# else: # Taller than wide
|
| 59 |
-
# height = FIXED_DIMENSION
|
| 60 |
-
# width = round(FIXED_DIMENSION * original_aspect_ratio)
|
| 61 |
-
|
| 62 |
-
# # Ensure dimensions are multiples of 8
|
| 63 |
-
# width = (width // 8) * 8
|
| 64 |
-
# height = (height // 8) * 8
|
| 65 |
-
|
| 66 |
-
# # Enforce aspect ratio limits
|
| 67 |
-
# calculated_aspect_ratio = width / height
|
| 68 |
-
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
| 69 |
-
# width = (height * MAX_ASPECT_RATIO // 8) * 8
|
| 70 |
-
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
| 71 |
-
# height = (width / MIN_ASPECT_RATIO // 8) * 8
|
| 72 |
-
|
| 73 |
-
# # Ensure width and height remain above the minimum dimensions
|
| 74 |
-
# width = max(width, 576) if width == FIXED_DIMENSION else width
|
| 75 |
-
# height = max(height, 576) if height == FIXED_DIMENSION else height
|
| 76 |
-
|
| 77 |
-
# return width, height
|
| 78 |
|
| 79 |
@spaces.GPU(durations=300)
|
| 80 |
-
|
| 81 |
-
def infer(edit_images, prompt, width, height, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 82 |
# pipe.enable_xformers_memory_efficient_attention()
|
| 83 |
-
gr.Info("Infering")
|
| 84 |
-
|
| 85 |
-
# if lora_model != "None":
|
| 86 |
-
# pipe.load_lora_weights(lora_models[lora_model])
|
| 87 |
-
# pipe.enable_lora()
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
|
| 91 |
image = edit_images["background"]
|
| 92 |
-
mask = edit_images["layers"][0]
|
| 93 |
-
|
| 94 |
-
if not image:
|
| 95 |
-
gr.Info("Please upload an image.")
|
| 96 |
-
return None, None
|
| 97 |
-
|
| 98 |
# width, height = calculate_optimal_dimensions(image)
|
|
|
|
| 99 |
if randomize_seed:
|
| 100 |
seed = random.randint(0, MAX_SEED)
|
| 101 |
|
| 102 |
# controlImage = processor(image)
|
| 103 |
-
gr.Info("generating image")
|
| 104 |
image = pipe(
|
| 105 |
# mask_image_latent=vae.encode(controlImage),
|
| 106 |
prompt=prompt,
|
|
@@ -110,10 +61,8 @@ def infer(edit_images, prompt, width, height, strength, seed=42, randomize_seed=
|
|
| 110 |
height=height,
|
| 111 |
width=width,
|
| 112 |
guidance_scale=guidance_scale,
|
| 113 |
-
# strength=strength,
|
| 114 |
num_inference_steps=num_inference_steps,
|
| 115 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
| 116 |
-
# generator=torch.Generator().manual_seed(seed),
|
| 117 |
# lora_scale=0.75 // not supported in this version
|
| 118 |
).images[0]
|
| 119 |
|
|
@@ -123,55 +72,6 @@ def infer(edit_images, prompt, width, height, strength, seed=42, randomize_seed=
|
|
| 123 |
return output_image_jpg, seed
|
| 124 |
# return image, seed
|
| 125 |
|
| 126 |
-
def download_image(image):
|
| 127 |
-
if isinstance(image, np.ndarray):
|
| 128 |
-
image = Image.fromarray(image)
|
| 129 |
-
image.save("output.png", "PNG")
|
| 130 |
-
return "output.png"
|
| 131 |
-
|
| 132 |
-
def save_details(result, edit_image, prompt, strength, seed, guidance_scale, num_inference_steps):
|
| 133 |
-
image = edit_image["background"]
|
| 134 |
-
mask = edit_image["layers"][0]
|
| 135 |
-
|
| 136 |
-
if isinstance(result, np.ndarray):
|
| 137 |
-
result = Image.fromarray(result)
|
| 138 |
-
if isinstance(image, np.ndarray):
|
| 139 |
-
image = Image.fromarray(image)
|
| 140 |
-
if isinstance(mask, np.ndarray):
|
| 141 |
-
mask = Image.fromarray(mask)
|
| 142 |
-
|
| 143 |
-
result.save("saved_result.png", "PNG")
|
| 144 |
-
image.save("saved_image.png", "PNG")
|
| 145 |
-
mask.save("saved_mask.png", "PNG")
|
| 146 |
-
|
| 147 |
-
details = {
|
| 148 |
-
"prompt": prompt,
|
| 149 |
-
"strength": strength,
|
| 150 |
-
"seed": seed,
|
| 151 |
-
"guidance_scale": guidance_scale,
|
| 152 |
-
"num_inference_steps": num_inference_steps
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
with open("details.json", "w") as f:
|
| 156 |
-
json.dump(details, f)
|
| 157 |
-
|
| 158 |
-
# Create a ZIP file
|
| 159 |
-
with zipfile.ZipFile("output.zip", "w") as zipf:
|
| 160 |
-
zipf.write("saved_result.png")
|
| 161 |
-
zipf.write("saved_image.png")
|
| 162 |
-
zipf.write("saved_mask.png")
|
| 163 |
-
zipf.write("details.json")
|
| 164 |
-
|
| 165 |
-
return "output.zip"
|
| 166 |
-
|
| 167 |
-
def set_image_as_inpaint(image):
|
| 168 |
-
return image
|
| 169 |
-
|
| 170 |
-
# def generate_mask(image, click_x, click_y):
|
| 171 |
-
# text_prompt = "face"
|
| 172 |
-
# mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)
|
| 173 |
-
# return mask
|
| 174 |
-
|
| 175 |
examples = [
|
| 176 |
"photography of a young woman, accent lighting, (front view:1.4), "
|
| 177 |
# "a tiny astronaut hatching from an egg on the moon",
|
|
@@ -210,11 +110,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 210 |
container=False,
|
| 211 |
)
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
|
| 219 |
run_button = gr.Button("Run")
|
| 220 |
|
|
@@ -250,16 +150,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 250 |
value=28,
|
| 251 |
)
|
| 252 |
|
| 253 |
-
with gr.Row():
|
| 254 |
-
|
| 255 |
-
strength = gr.Slider(
|
| 256 |
-
label="Strength",
|
| 257 |
-
minimum=0,
|
| 258 |
-
maximum=1,
|
| 259 |
-
step=0.01,
|
| 260 |
-
value=0.85,
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
with gr.Row():
|
| 264 |
|
| 265 |
width = gr.Slider(
|
|
@@ -281,38 +171,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 281 |
gr.on(
|
| 282 |
triggers=[run_button.click, prompt.submit],
|
| 283 |
fn = infer,
|
| 284 |
-
inputs = [edit_image, prompt, width, height,
|
| 285 |
outputs = [result, seed]
|
| 286 |
)
|
| 287 |
|
| 288 |
-
download_button = gr.Button("Download Image as PNG")
|
| 289 |
-
set_inpaint_button = gr.Button("Set Image as Inpaint")
|
| 290 |
-
save_button = gr.Button("Save Details")
|
| 291 |
-
|
| 292 |
-
download_button.click(
|
| 293 |
-
fn=download_image,
|
| 294 |
-
inputs=[result],
|
| 295 |
-
outputs=gr.File(label="Download Image")
|
| 296 |
-
)
|
| 297 |
-
|
| 298 |
-
set_inpaint_button.click(
|
| 299 |
-
fn=set_image_as_inpaint,
|
| 300 |
-
inputs=[result],
|
| 301 |
-
outputs=[edit_image]
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
save_button.click(
|
| 305 |
-
fn=save_details,
|
| 306 |
-
inputs=[result, edit_image, prompt, strength, seed, guidance_scale, num_inference_steps],
|
| 307 |
-
outputs=gr.File(label="Download/Save Status")
|
| 308 |
-
)
|
| 309 |
-
|
| 310 |
-
# edit_image.select(
|
| 311 |
-
# fn=generate_mask,
|
| 312 |
-
# inputs=[edit_image, gr.Number(), gr.Number()],
|
| 313 |
-
# outputs=[edit_image]
|
| 314 |
-
# )
|
| 315 |
-
|
| 316 |
# demo.launch()
|
| 317 |
PASSWORD = os.getenv("GRADIO_PASSWORD")
|
| 318 |
USERNAME = os.getenv("GRADIO_USERNAME")
|
|
@@ -325,4 +187,4 @@ def authenticate(username, password):
|
|
| 325 |
return False
|
| 326 |
# Launch the app with authentication
|
| 327 |
|
| 328 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import os
|
| 4 |
+
import spaces
|
| 5 |
import random
|
| 6 |
import json
|
| 7 |
+
# from image_gen_aux import DepthPreprocessor
|
| 8 |
from PIL import Image
|
| 9 |
import torch
|
| 10 |
from torchvision import transforms
|
|
|
|
| 11 |
|
| 12 |
from diffusers import FluxFillPipeline, AutoencoderKL
|
| 13 |
from PIL import Image
|
| 14 |
+
|
| 15 |
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
MAX_IMAGE_SIZE = 2048
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 20 |
+
# pipe.load_lora_weights("Himanshu806/testLora")
|
| 21 |
+
# pipe.enable_lora()
|
| 22 |
|
| 23 |
+
with open("lora_models.json", "r") as f:
|
| 24 |
+
lora_models = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
def download_model(model_name, model_path):
|
| 27 |
+
print(f"Downloading model: {model_name} from {model_path}")
|
| 28 |
+
try:
|
| 29 |
+
pipe.load_lora_weights(model_path)
|
| 30 |
+
print(f"Successfully downloaded model: {model_name}")
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Failed to download model: {model_name}. Error: {e}")
|
| 33 |
|
| 34 |
+
# Iterate through the models and download each one
|
| 35 |
+
for model_name, model_path in lora_models.items():
|
| 36 |
+
download_model(model_name, model_path)
|
|
|
|
| 37 |
|
| 38 |
+
lora_models["None"] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
@spaces.GPU(durations=300)
|
| 41 |
+
def infer(edit_images, prompt, width, height, lora_model, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 42 |
# pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
if lora_model != "None":
|
| 45 |
+
pipe.load_lora_weights(lora_models[lora_model])
|
| 46 |
+
pipe.enable_lora()
|
| 47 |
|
| 48 |
image = edit_images["background"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# width, height = calculate_optimal_dimensions(image)
|
| 50 |
+
mask = edit_images["layers"][0]
|
| 51 |
if randomize_seed:
|
| 52 |
seed = random.randint(0, MAX_SEED)
|
| 53 |
|
| 54 |
# controlImage = processor(image)
|
|
|
|
| 55 |
image = pipe(
|
| 56 |
# mask_image_latent=vae.encode(controlImage),
|
| 57 |
prompt=prompt,
|
|
|
|
| 61 |
height=height,
|
| 62 |
width=width,
|
| 63 |
guidance_scale=guidance_scale,
|
|
|
|
| 64 |
num_inference_steps=num_inference_steps,
|
| 65 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
|
|
|
| 66 |
# lora_scale=0.75 // not supported in this version
|
| 67 |
).images[0]
|
| 68 |
|
|
|
|
| 72 |
return output_image_jpg, seed
|
| 73 |
# return image, seed
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
examples = [
|
| 76 |
"photography of a young woman, accent lighting, (front view:1.4), "
|
| 77 |
# "a tiny astronaut hatching from an egg on the moon",
|
|
|
|
| 110 |
container=False,
|
| 111 |
)
|
| 112 |
|
| 113 |
+
lora_model = gr.Dropdown(
|
| 114 |
+
label="Select LoRA Model",
|
| 115 |
+
choices=list(lora_models.keys()),
|
| 116 |
+
value="None",
|
| 117 |
+
)
|
| 118 |
|
| 119 |
run_button = gr.Button("Run")
|
| 120 |
|
|
|
|
| 150 |
value=28,
|
| 151 |
)
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
with gr.Row():
|
| 154 |
|
| 155 |
width = gr.Slider(
|
|
|
|
| 171 |
gr.on(
|
| 172 |
triggers=[run_button.click, prompt.submit],
|
| 173 |
fn = infer,
|
| 174 |
+
inputs = [edit_image, prompt, width, height, lora_model, seed, randomize_seed, guidance_scale, num_inference_steps],
|
| 175 |
outputs = [result, seed]
|
| 176 |
)
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
# demo.launch()
|
| 179 |
PASSWORD = os.getenv("GRADIO_PASSWORD")
|
| 180 |
USERNAME = os.getenv("GRADIO_USERNAME")
|
|
|
|
| 187 |
return False
|
| 188 |
# Launch the app with authentication
|
| 189 |
|
| 190 |
+
demo.launch(auth=authenticate)
|
lora_models.json
CHANGED
|
@@ -1,9 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"RahulFineTuned
|
| 3 |
-
"
|
| 4 |
-
"KodaRealistic (flmft style)": "alvdansen/flux-koda",
|
| 5 |
-
"superRealism (Super Realism)": "strangerzonehf/Flux-Super-Realism-LoRA",
|
| 6 |
-
"ThirdMarch blue (blueThirdMarchDress)": "Himanshu806/bluethirdmarchdress",
|
| 7 |
-
"manosouthf (manoSouthf)": "Himanshu806/manosouthf",
|
| 8 |
-
"greenDress (onlyGreenDress)": "Himanshu806/onlygreendress"
|
| 9 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"RahulFineTuned": "Himanshu806/testLora",
|
| 3 |
+
"KodaRealistic": "alvdansen/flux-koda"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
}
|
readme.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title: Inpainting
|
| 3 |
emoji: 🏆
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Inpainting
|
| 3 |
emoji: 🏆
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.39.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
---
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
git+https://github.com/asomoza/image_gen_aux.git
|
| 2 |
-
git+https://github.com/huggingface/diffusers
|
| 3 |
transformers
|
| 4 |
accelerate
|
| 5 |
safetensors
|
|
@@ -8,6 +8,3 @@ peft
|
|
| 8 |
xformers
|
| 9 |
torchvision
|
| 10 |
torch
|
| 11 |
-
opencv-python
|
| 12 |
-
segment-geospatial
|
| 13 |
-
groundingdino-py
|
|
|
|
| 1 |
git+https://github.com/asomoza/image_gen_aux.git
|
| 2 |
+
git+https://github.com/huggingface/diffusers.git
|
| 3 |
transformers
|
| 4 |
accelerate
|
| 5 |
safetensors
|
|
|
|
| 8 |
xformers
|
| 9 |
torchvision
|
| 10 |
torch
|
|
|
|
|
|
|
|
|