Spaces:
Sleeping
Sleeping
Update README.md
#1
by
xphillyx
- opened
- .DS_Store +0 -0
- README.md +2 -2
- app.py +22 -159
- lora_models.json +2 -4
- readme.md +2 -2
- requirements.txt +0 -3
.DS_Store
DELETED
Binary file (6.15 kB)
|
|
README.md
CHANGED
@@ -4,9 +4,9 @@ emoji: 🏆
|
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.14.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,26 +1,24 @@
|
|
1 |
-
import spaces
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import os
|
|
|
6 |
import random
|
7 |
import json
|
|
|
8 |
from PIL import Image
|
9 |
import torch
|
10 |
from torchvision import transforms
|
11 |
-
import zipfile
|
12 |
|
13 |
from diffusers import FluxFillPipeline, AutoencoderKL
|
14 |
from PIL import Image
|
15 |
-
|
16 |
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 2048
|
19 |
|
20 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
# sam = LangSAM(model_type="sam2-hiera-large").to(device)
|
22 |
-
|
23 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
24 |
|
25 |
with open("lora_models.json", "r") as f:
|
26 |
lora_models = json.load(f)
|
@@ -39,68 +37,21 @@ for model_name, model_path in lora_models.items():
|
|
39 |
|
40 |
lora_models["None"] = None
|
41 |
|
42 |
-
def calculate_optimal_dimensions(image: Image.Image):
|
43 |
-
# Extract the original dimensions
|
44 |
-
original_width, original_height = image.size
|
45 |
-
|
46 |
-
# Set constants
|
47 |
-
MIN_ASPECT_RATIO = 9 / 16
|
48 |
-
MAX_ASPECT_RATIO = 16 / 9
|
49 |
-
FIXED_DIMENSION = 1024
|
50 |
-
|
51 |
-
# Calculate the aspect ratio of the original image
|
52 |
-
original_aspect_ratio = original_width / original_height
|
53 |
-
|
54 |
-
# Determine which dimension to fix
|
55 |
-
if original_aspect_ratio > 1: # Wider than tall
|
56 |
-
width = FIXED_DIMENSION
|
57 |
-
height = round(FIXED_DIMENSION / original_aspect_ratio)
|
58 |
-
else: # Taller than wide
|
59 |
-
height = FIXED_DIMENSION
|
60 |
-
width = round(FIXED_DIMENSION * original_aspect_ratio)
|
61 |
-
|
62 |
-
# Ensure dimensions are multiples of 8
|
63 |
-
width = (width // 8) * 8
|
64 |
-
height = (height // 8) * 8
|
65 |
-
|
66 |
-
# Enforce aspect ratio limits
|
67 |
-
calculated_aspect_ratio = width / height
|
68 |
-
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
69 |
-
width = (height * MAX_ASPECT_RATIO // 8) * 8
|
70 |
-
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
71 |
-
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
72 |
-
|
73 |
-
# Ensure width and height remain above the minimum dimensions
|
74 |
-
width = max(width, 576) if width == FIXED_DIMENSION else width
|
75 |
-
height = max(height, 576) if height == FIXED_DIMENSION else height
|
76 |
-
|
77 |
-
return width, height
|
78 |
-
|
79 |
@spaces.GPU(durations=300)
|
80 |
-
def infer(edit_images, prompt,
|
81 |
# pipe.enable_xformers_memory_efficient_attention()
|
82 |
-
gr.Info("Infering")
|
83 |
|
84 |
if lora_model != "None":
|
85 |
pipe.load_lora_weights(lora_models[lora_model])
|
86 |
pipe.enable_lora()
|
87 |
|
88 |
-
gr.Info("starting checks")
|
89 |
-
|
90 |
image = edit_images["background"]
|
|
|
91 |
mask = edit_images["layers"][0]
|
92 |
-
|
93 |
-
if not image:
|
94 |
-
gr.Info("Please upload an image.")
|
95 |
-
return None, None
|
96 |
-
|
97 |
-
|
98 |
-
width, height = calculate_optimal_dimensions(image)
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, MAX_SEED)
|
101 |
|
102 |
# controlImage = processor(image)
|
103 |
-
gr.Info("generating image")
|
104 |
image = pipe(
|
105 |
# mask_image_latent=vae.encode(controlImage),
|
106 |
prompt=prompt,
|
@@ -110,10 +61,8 @@ def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=Fal
|
|
110 |
height=height,
|
111 |
width=width,
|
112 |
guidance_scale=guidance_scale,
|
113 |
-
# strength=strength,
|
114 |
num_inference_steps=num_inference_steps,
|
115 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
116 |
-
# generator=torch.Generator().manual_seed(seed),
|
117 |
# lora_scale=0.75 // not supported in this version
|
118 |
).images[0]
|
119 |
|
@@ -123,56 +72,6 @@ def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=Fal
|
|
123 |
return output_image_jpg, seed
|
124 |
# return image, seed
|
125 |
|
126 |
-
def download_image(image):
|
127 |
-
if isinstance(image, np.ndarray):
|
128 |
-
image = Image.fromarray(image)
|
129 |
-
image.save("output.png", "PNG")
|
130 |
-
return "output.png"
|
131 |
-
|
132 |
-
def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps):
|
133 |
-
image = edit_image["background"]
|
134 |
-
mask = edit_image["layers"][0]
|
135 |
-
|
136 |
-
if isinstance(result, np.ndarray):
|
137 |
-
result = Image.fromarray(result)
|
138 |
-
if isinstance(image, np.ndarray):
|
139 |
-
image = Image.fromarray(image)
|
140 |
-
if isinstance(mask, np.ndarray):
|
141 |
-
mask = Image.fromarray(mask)
|
142 |
-
|
143 |
-
result.save("saved_result.png", "PNG")
|
144 |
-
image.save("saved_image.png", "PNG")
|
145 |
-
mask.save("saved_mask.png", "PNG")
|
146 |
-
|
147 |
-
details = {
|
148 |
-
"prompt": prompt,
|
149 |
-
"lora_model": lora_model,
|
150 |
-
"strength": strength,
|
151 |
-
"seed": seed,
|
152 |
-
"guidance_scale": guidance_scale,
|
153 |
-
"num_inference_steps": num_inference_steps
|
154 |
-
}
|
155 |
-
|
156 |
-
with open("details.json", "w") as f:
|
157 |
-
json.dump(details, f)
|
158 |
-
|
159 |
-
# Create a ZIP file
|
160 |
-
with zipfile.ZipFile("output.zip", "w") as zipf:
|
161 |
-
zipf.write("saved_result.png")
|
162 |
-
zipf.write("saved_image.png")
|
163 |
-
zipf.write("saved_mask.png")
|
164 |
-
zipf.write("details.json")
|
165 |
-
|
166 |
-
return "output.zip"
|
167 |
-
|
168 |
-
def set_image_as_inpaint(image):
|
169 |
-
return image
|
170 |
-
|
171 |
-
# def generate_mask(image, click_x, click_y):
|
172 |
-
# text_prompt = "face"
|
173 |
-
# mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)
|
174 |
-
# return mask
|
175 |
-
|
176 |
examples = [
|
177 |
"photography of a young woman, accent lighting, (front view:1.4), "
|
178 |
# "a tiny astronaut hatching from an egg on the moon",
|
@@ -253,65 +152,29 @@ with gr.Blocks(css=css) as demo:
|
|
253 |
|
254 |
with gr.Row():
|
255 |
|
256 |
-
|
257 |
-
label="
|
258 |
-
minimum=
|
259 |
-
maximum=
|
260 |
-
step=
|
261 |
-
value=
|
262 |
)
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
# height = gr.Slider(
|
273 |
-
# label="height",
|
274 |
-
# minimum=512,
|
275 |
-
# maximum=3072,
|
276 |
-
# step=1,
|
277 |
-
# value=1024,
|
278 |
-
# )
|
279 |
|
280 |
gr.on(
|
281 |
triggers=[run_button.click, prompt.submit],
|
282 |
fn = infer,
|
283 |
-
inputs = [edit_image, prompt,
|
284 |
outputs = [result, seed]
|
285 |
)
|
286 |
|
287 |
-
download_button = gr.Button("Download Image as PNG")
|
288 |
-
set_inpaint_button = gr.Button("Set Image as Inpaint")
|
289 |
-
save_button = gr.Button("Save Details")
|
290 |
-
|
291 |
-
download_button.click(
|
292 |
-
fn=download_image,
|
293 |
-
inputs=[result],
|
294 |
-
outputs=gr.File(label="Download Image")
|
295 |
-
)
|
296 |
-
|
297 |
-
set_inpaint_button.click(
|
298 |
-
fn=set_image_as_inpaint,
|
299 |
-
inputs=[result],
|
300 |
-
outputs=[edit_image]
|
301 |
-
)
|
302 |
-
|
303 |
-
save_button.click(
|
304 |
-
fn=save_details,
|
305 |
-
inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps],
|
306 |
-
outputs=gr.File(label="Download/Save Status")
|
307 |
-
)
|
308 |
-
|
309 |
-
# edit_image.select(
|
310 |
-
# fn=generate_mask,
|
311 |
-
# inputs=[edit_image, gr.Number(), gr.Number()],
|
312 |
-
# outputs=[edit_image]
|
313 |
-
# )
|
314 |
-
|
315 |
# demo.launch()
|
316 |
PASSWORD = os.getenv("GRADIO_PASSWORD")
|
317 |
USERNAME = os.getenv("GRADIO_USERNAME")
|
@@ -324,4 +187,4 @@ def authenticate(username, password):
|
|
324 |
return False
|
325 |
# Launch the app with authentication
|
326 |
|
327 |
-
demo.launch(
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import os
|
4 |
+
import spaces
|
5 |
import random
|
6 |
import json
|
7 |
+
# from image_gen_aux import DepthPreprocessor
|
8 |
from PIL import Image
|
9 |
import torch
|
10 |
from torchvision import transforms
|
|
|
11 |
|
12 |
from diffusers import FluxFillPipeline, AutoencoderKL
|
13 |
from PIL import Image
|
14 |
+
|
15 |
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
MAX_IMAGE_SIZE = 2048
|
18 |
|
|
|
|
|
|
|
19 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
20 |
+
# pipe.load_lora_weights("Himanshu806/testLora")
|
21 |
+
# pipe.enable_lora()
|
22 |
|
23 |
with open("lora_models.json", "r") as f:
|
24 |
lora_models = json.load(f)
|
|
|
37 |
|
38 |
lora_models["None"] = None
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
@spaces.GPU(durations=300)
|
41 |
+
def infer(edit_images, prompt, width, height, lora_model, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
42 |
# pipe.enable_xformers_memory_efficient_attention()
|
|
|
43 |
|
44 |
if lora_model != "None":
|
45 |
pipe.load_lora_weights(lora_models[lora_model])
|
46 |
pipe.enable_lora()
|
47 |
|
|
|
|
|
48 |
image = edit_images["background"]
|
49 |
+
# width, height = calculate_optimal_dimensions(image)
|
50 |
mask = edit_images["layers"][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if randomize_seed:
|
52 |
seed = random.randint(0, MAX_SEED)
|
53 |
|
54 |
# controlImage = processor(image)
|
|
|
55 |
image = pipe(
|
56 |
# mask_image_latent=vae.encode(controlImage),
|
57 |
prompt=prompt,
|
|
|
61 |
height=height,
|
62 |
width=width,
|
63 |
guidance_scale=guidance_scale,
|
|
|
64 |
num_inference_steps=num_inference_steps,
|
65 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
|
|
66 |
# lora_scale=0.75 // not supported in this version
|
67 |
).images[0]
|
68 |
|
|
|
72 |
return output_image_jpg, seed
|
73 |
# return image, seed
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
examples = [
|
76 |
"photography of a young woman, accent lighting, (front view:1.4), "
|
77 |
# "a tiny astronaut hatching from an egg on the moon",
|
|
|
152 |
|
153 |
with gr.Row():
|
154 |
|
155 |
+
width = gr.Slider(
|
156 |
+
label="width",
|
157 |
+
minimum=512,
|
158 |
+
maximum=3072,
|
159 |
+
step=1,
|
160 |
+
value=1024,
|
161 |
)
|
162 |
|
163 |
+
height = gr.Slider(
|
164 |
+
label="height",
|
165 |
+
minimum=512,
|
166 |
+
maximum=3072,
|
167 |
+
step=1,
|
168 |
+
value=1024,
|
169 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
gr.on(
|
172 |
triggers=[run_button.click, prompt.submit],
|
173 |
fn = infer,
|
174 |
+
inputs = [edit_image, prompt, width, height, lora_model, seed, randomize_seed, guidance_scale, num_inference_steps],
|
175 |
outputs = [result, seed]
|
176 |
)
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
# demo.launch()
|
179 |
PASSWORD = os.getenv("GRADIO_PASSWORD")
|
180 |
USERNAME = os.getenv("GRADIO_USERNAME")
|
|
|
187 |
return False
|
188 |
# Launch the app with authentication
|
189 |
|
190 |
+
demo.launch(auth=authenticate)
|
lora_models.json
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
{
|
2 |
-
"RahulFineTuned
|
3 |
-
"
|
4 |
-
"KodaRealistic (flmft style)": "alvdansen/flux-koda",
|
5 |
-
"superRealism (Super Realism)": "strangerzonehf/Flux-Super-Realism-LoRA"
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"RahulFineTuned": "Himanshu806/testLora",
|
3 |
+
"KodaRealistic": "alvdansen/flux-koda"
|
|
|
|
|
4 |
}
|
readme.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Inpainting
|
3 |
emoji: 🏆
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: Inpainting
|
3 |
emoji: 🏆
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
requirements.txt
CHANGED
@@ -8,6 +8,3 @@ peft
|
|
8 |
xformers
|
9 |
torchvision
|
10 |
torch
|
11 |
-
opencv-python
|
12 |
-
segment-geospatial
|
13 |
-
groundingdino-py
|
|
|
8 |
xformers
|
9 |
torchvision
|
10 |
torch
|
|
|
|
|
|