Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
from PIL import Image | |
import cv2 | |
import spaces | |
# ------------------ Inpainting Pipeline Setup ------------------ # | |
from diffusers import FluxFillPipeline | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
pipe = FluxFillPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16 | |
) | |
pipe.load_lora_weights("alvdansen/flux-koda") | |
pipe.enable_lora() | |
def calculate_optimal_dimensions(image: Image.Image): | |
# Extract the original dimensions | |
original_width, original_height = image.size | |
# Set constants | |
MIN_ASPECT_RATIO = 9 / 16 | |
MAX_ASPECT_RATIO = 16 / 9 | |
FIXED_DIMENSION = 1024 | |
# Calculate the aspect ratio of the original image | |
original_aspect_ratio = original_width / original_height | |
# Determine which dimension to fix | |
if original_aspect_ratio > 1: # Wider than tall | |
width = FIXED_DIMENSION | |
height = round(FIXED_DIMENSION / original_aspect_ratio) | |
else: # Taller than wide | |
height = FIXED_DIMENSION | |
width = round(FIXED_DIMENSION * original_aspect_ratio) | |
# Ensure dimensions are multiples of 8 | |
width = (width // 8) * 8 | |
height = (height // 8) * 8 | |
# Enforce aspect ratio limits | |
calculated_aspect_ratio = width / height | |
if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
# Ensure minimum dimensions are met | |
width = max(width, 576) if width == FIXED_DIMENSION else width | |
height = max(height, 576) if height == FIXED_DIMENSION else height | |
return width, height | |
# ------------------ SAM (Transformers) Imports and Initialization ------------------ # | |
from transformers import SamModel, SamProcessor | |
# Load the model and processor from Hugging Face. | |
sam_model = SamModel.from_pretrained("facebook/sam-vit-base") | |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base") | |
def generate_mask_with_sam(image: Image.Image, mask_prompt: str): | |
""" | |
Generate a segmentation mask using SAM (via Hugging Face Transformers). | |
The mask_prompt is expected to be a comma-separated string of two integers, | |
e.g. "450,600" representing an (x,y) coordinate in the image. | |
The function converts the coordinate into the proper input format for SAM and returns a binary mask. | |
""" | |
if mask_prompt.strip() == "": | |
raise ValueError("No mask prompt provided.") | |
try: | |
# Parse the mask_prompt into a coordinate | |
coords = [int(x.strip()) for x in mask_prompt.split(",")] | |
if len(coords) != 2: | |
raise ValueError("Expected two comma-separated integers (x,y).") | |
except Exception as e: | |
raise ValueError("Invalid mask prompt. Please provide coordinates as 'x,y'. Error: " + str(e)) | |
# The SAM processor expects a list of input points. | |
# Format the point as a list of lists; here we assume one point per image. | |
# (The Transformers SAM expects the points in [x, y] order.) | |
input_points = [coords] # e.g. [[450,600]] | |
# Optionally, you can supply input_labels (1 for foreground, 0 for background) | |
input_labels = [1] | |
# Prepare the inputs for the SAM processor. | |
inputs = sam_processor(images=image, | |
input_points=[input_points], | |
input_labels=[input_labels], | |
return_tensors="pt") | |
# Move tensors to the same device as the model. | |
device = next(sam_model.parameters()).device | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Forward pass through SAM. | |
with torch.no_grad(): | |
outputs = sam_model(**inputs) | |
# The output contains predicted masks; we take the first mask from the first prompt. | |
# (Assuming outputs.pred_masks is of shape (batch_size, num_masks, H, W)) | |
pred_masks = outputs.pred_masks # Tensor of shape (1, num_masks, H, W) | |
mask = pred_masks[0][0].detach().cpu().numpy() | |
# Convert the mask to binary (0 or 255) using a threshold. | |
mask_bin = (mask > 0.5).astype(np.uint8) * 255 | |
mask_pil = Image.fromarray(mask_bin) | |
return mask_pil | |
# ------------------ Inference Function ------------------ # | |
def infer(edit_images, prompt, mask_prompt, | |
seed=42, randomize_seed=False, width=1024, height=1024, | |
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
# Get the base image from the "background" layer. | |
image = edit_images["background"] | |
width, height = calculate_optimal_dimensions(image) | |
# If a mask prompt is provided, use the SAM-based mask generator. | |
if mask_prompt and mask_prompt.strip() != "": | |
try: | |
mask = generate_mask_with_sam(image, mask_prompt) | |
except Exception as e: | |
raise ValueError("Error generating mask from prompt: " + str(e)) | |
else: | |
# Fall back to using a manually drawn mask (from the first layer). | |
try: | |
mask = edit_images["layers"][0] | |
except (TypeError, IndexError): | |
raise ValueError("No mask provided. Please either draw a mask or supply a mask prompt.") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Run the inpainting diffusion pipeline with the provided prompt and mask. | |
image_out = pipe( | |
prompt=prompt, | |
image=image, | |
mask_image=mask, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator(device='cuda').manual_seed(seed), | |
).images[0] | |
output_image_jpg = image_out.convert("RGB") | |
output_image_jpg.save("output.jpg", "JPEG") | |
return output_image_jpg, seed | |
# ------------------ Gradio UI ------------------ # | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1000px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# FLUX.1 [dev] with SAM (Transformers) Mask Generation") | |
with gr.Row(): | |
with gr.Column(): | |
# The image editor now allows you to optionally draw a mask. | |
edit_image = gr.ImageEditor( | |
label='Upload Image (and optionally draw a mask)', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, # We will generate a mask automatically if needed. | |
brush=gr.Brush(colors=["#FFFFFF"]), | |
) | |
prompt = gr.Text( | |
label="Inpainting Prompt", | |
show_label=False, | |
max_lines=2, | |
placeholder="Enter your inpainting prompt", | |
container=False, | |
) | |
mask_prompt = gr.Text( | |
label="Mask Prompt (enter a coordinate as 'x,y')", | |
show_label=True, | |
placeholder="E.g. 450,600", | |
container=True, | |
) | |
generate_mask_btn = gr.Button("Generate Mask") | |
mask_preview = gr.Image(label="Mask Preview", show_label=True) | |
run_button = gr.Button("Run") | |
result = gr.Image(label="Result", show_label=False) | |
# Button to preview the generated mask. | |
def on_generate_mask(image, mask_prompt): | |
if image is None or mask_prompt.strip() == "": | |
return None | |
mask = generate_mask_with_sam(image, mask_prompt) | |
return mask | |
generate_mask_btn.click( | |
fn=on_generate_mask, | |
inputs=[edit_image, mask_prompt], | |
outputs=[mask_preview] | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
visible=False | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
visible=False | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=30, | |
step=0.5, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[edit_image, prompt, mask_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
# demo.launch() | |
PASSWORD = os.getenv("GRADIO_PASSWORD") | |
USERNAME = os.getenv("GRADIO_USERNAME") | |
# Create an authentication object | |
def authenticate(username, password): | |
if username == USERNAME and password == PASSWORD: | |
return True | |
else: | |
return False | |
# Launch the app with authentication | |
demo.launch(auth=authenticate) | |