Himanshu-AT
update titles in README and requirements, add opencv-python
3534d80
raw
history blame
9.91 kB
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
import cv2
import spaces
# ------------------ Inpainting Pipeline Setup ------------------ #
from diffusers import FluxFillPipeline
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
)
pipe.load_lora_weights("alvdansen/flux-koda")
pipe.enable_lora()
def calculate_optimal_dimensions(image: Image.Image):
# Extract the original dimensions
original_width, original_height = image.size
# Set constants
MIN_ASPECT_RATIO = 9 / 16
MAX_ASPECT_RATIO = 16 / 9
FIXED_DIMENSION = 1024
# Calculate the aspect ratio of the original image
original_aspect_ratio = original_width / original_height
# Determine which dimension to fix
if original_aspect_ratio > 1: # Wider than tall
width = FIXED_DIMENSION
height = round(FIXED_DIMENSION / original_aspect_ratio)
else: # Taller than wide
height = FIXED_DIMENSION
width = round(FIXED_DIMENSION * original_aspect_ratio)
# Ensure dimensions are multiples of 8
width = (width // 8) * 8
height = (height // 8) * 8
# Enforce aspect ratio limits
calculated_aspect_ratio = width / height
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
width = (height * MAX_ASPECT_RATIO // 8) * 8
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
height = (width / MIN_ASPECT_RATIO // 8) * 8
# Ensure minimum dimensions are met
width = max(width, 576) if width == FIXED_DIMENSION else width
height = max(height, 576) if height == FIXED_DIMENSION else height
return width, height
# ------------------ SAM (Transformers) Imports and Initialization ------------------ #
from transformers import SamModel, SamProcessor
# Load the model and processor from Hugging Face.
sam_model = SamModel.from_pretrained("facebook/sam-vit-base")
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
@spaces.GPU(durations=300)
def generate_mask_with_sam(image: Image.Image, mask_prompt: str):
"""
Generate a segmentation mask using SAM (via Hugging Face Transformers).
The mask_prompt is expected to be a comma-separated string of two integers,
e.g. "450,600" representing an (x,y) coordinate in the image.
The function converts the coordinate into the proper input format for SAM and returns a binary mask.
"""
if mask_prompt.strip() == "":
raise ValueError("No mask prompt provided.")
try:
# Parse the mask_prompt into a coordinate
coords = [int(x.strip()) for x in mask_prompt.split(",")]
if len(coords) != 2:
raise ValueError("Expected two comma-separated integers (x,y).")
except Exception as e:
raise ValueError("Invalid mask prompt. Please provide coordinates as 'x,y'. Error: " + str(e))
# The SAM processor expects a list of input points.
# Format the point as a list of lists; here we assume one point per image.
# (The Transformers SAM expects the points in [x, y] order.)
input_points = [coords] # e.g. [[450,600]]
# Optionally, you can supply input_labels (1 for foreground, 0 for background)
input_labels = [1]
# Prepare the inputs for the SAM processor.
inputs = sam_processor(images=image,
input_points=[input_points],
input_labels=[input_labels],
return_tensors="pt")
# Move tensors to the same device as the model.
device = next(sam_model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Forward pass through SAM.
with torch.no_grad():
outputs = sam_model(**inputs)
# The output contains predicted masks; we take the first mask from the first prompt.
# (Assuming outputs.pred_masks is of shape (batch_size, num_masks, H, W))
pred_masks = outputs.pred_masks # Tensor of shape (1, num_masks, H, W)
mask = pred_masks[0][0].detach().cpu().numpy()
# Convert the mask to binary (0 or 255) using a threshold.
mask_bin = (mask > 0.5).astype(np.uint8) * 255
mask_pil = Image.fromarray(mask_bin)
return mask_pil
# ------------------ Inference Function ------------------ #
@spaces.GPU(durations=300)
def infer(edit_images, prompt, mask_prompt,
seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# Get the base image from the "background" layer.
image = edit_images["background"]
width, height = calculate_optimal_dimensions(image)
# If a mask prompt is provided, use the SAM-based mask generator.
if mask_prompt and mask_prompt.strip() != "":
try:
mask = generate_mask_with_sam(image, mask_prompt)
except Exception as e:
raise ValueError("Error generating mask from prompt: " + str(e))
else:
# Fall back to using a manually drawn mask (from the first layer).
try:
mask = edit_images["layers"][0]
except (TypeError, IndexError):
raise ValueError("No mask provided. Please either draw a mask or supply a mask prompt.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Run the inpainting diffusion pipeline with the provided prompt and mask.
image_out = pipe(
prompt=prompt,
image=image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
).images[0]
output_image_jpg = image_out.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
# ------------------ Gradio UI ------------------ #
css = """
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX.1 [dev] with SAM (Transformers) Mask Generation")
with gr.Row():
with gr.Column():
# The image editor now allows you to optionally draw a mask.
edit_image = gr.ImageEditor(
label='Upload Image (and optionally draw a mask)',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False, # We will generate a mask automatically if needed.
brush=gr.Brush(colors=["#FFFFFF"]),
)
prompt = gr.Text(
label="Inpainting Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your inpainting prompt",
container=False,
)
mask_prompt = gr.Text(
label="Mask Prompt (enter a coordinate as 'x,y')",
show_label=True,
placeholder="E.g. 450,600",
container=True,
)
generate_mask_btn = gr.Button("Generate Mask")
mask_preview = gr.Image(label="Mask Preview", show_label=True)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
# Button to preview the generated mask.
def on_generate_mask(image, mask_prompt):
if image is None or mask_prompt.strip() == "":
return None
mask = generate_mask_with_sam(image, mask_prompt)
return mask
generate_mask_btn.click(
fn=on_generate_mask,
inputs=[edit_image, mask_prompt],
outputs=[mask_preview]
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[edit_image, prompt, mask_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
# demo.launch()
PASSWORD = os.getenv("GRADIO_PASSWORD")
USERNAME = os.getenv("GRADIO_USERNAME")
# Create an authentication object
def authenticate(username, password):
if username == USERNAME and password == PASSWORD:
return True
else:
return False
# Launch the app with authentication
demo.launch(auth=authenticate)