File size: 1,154 Bytes
ee73d54 6d1bf41 a68f59e 6d1bf41 3b22ee7 6d1bf41 3406aa1 6d1bf41 ee73d54 3b22ee7 ee73d54 222e75c b984cf2 bb0ec8e 3b22ee7 899ec6d d2a3b3c 222e75c 3188082 222e75c 3b22ee7 b984cf2 ee73d54 222e75c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from huggingface_hub import InferenceClient
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline
# 載入模型和標記器
model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino"
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
# 建立生成管道
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def respond(message, history):
# 將當前訊息與歷史訊息合併
input_text = message if not history else history[-1]["content"] + " " + message
input_text = message
# 獲取模型的回應
response = pipe(input_text, max_length=500, truncation=True, num_return_sequences=1)
reply = response[0]['generated_text']
# 返回新的消息格式
print(f"Message: {message}")
print(f"Reply: {reply}")
return reply
# 設定 Gradio 的聊天界面
demo = gr.ChatInterface(fn=respond, title="Chat with Qwen(通義千問) 2.5-0.5B", description="與 Qwen2.5-0.5B-Instruct-openvino 聊天!", type='messages')
if __name__ == "__main__":
demo.launch() |