HelloSun commited on
Commit
6d1bf41
·
verified ·
1 Parent(s): c38fcb2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -38
app.py CHANGED
@@ -4,40 +4,20 @@ from huggingface_hub import InferenceClient
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
8
 
9
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
 
43
  """
@@ -47,15 +27,6 @@ demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
+ from optimum.intel import OVModelForCausalLM
8
+
9
+ model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino"
10
+ model = OVModelForCausalLM.from_pretrained(model_id)
11
+
12
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
13
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
14
 
15
 
16
  def respond(
17
  message,
 
 
 
 
 
18
  ):
19
+ results = pipe(message)
20
+ yield results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
 
23
  """
 
27
  respond,
28
  additional_inputs=[
29
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
 
 
 
 
 
 
 
 
 
30
  ],
31
  )
32