Update app.py
Browse files
app.py
CHANGED
@@ -4,40 +4,20 @@ from huggingface_hub import InferenceClient
|
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def respond(
|
11 |
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
|
43 |
"""
|
@@ -47,15 +27,6 @@ demo = gr.ChatInterface(
|
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
|
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
+
from optimum.intel import OVModelForCausalLM
|
8 |
+
|
9 |
+
model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino"
|
10 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
14 |
|
15 |
|
16 |
def respond(
|
17 |
message,
|
|
|
|
|
|
|
|
|
|
|
18 |
):
|
19 |
+
results = pipe(message)
|
20 |
+
yield results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
"""
|
|
|
27 |
respond,
|
28 |
additional_inputs=[
|
29 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
],
|
31 |
)
|
32 |
|