File size: 35,167 Bytes
6e06b7a baf381a 160a197 6e06b7a baf381a 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 baf381a 160a197 baf381a 160a197 baf381a 160a197 baf381a 6e06b7a 160a197 6e06b7a baf381a 6e06b7a 160a197 6e06b7a 160a197 baf381a 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 a38c422 160a197 baf381a 160a197 baf381a 160a197 baf381a 160a197 baf381a 160a197 a38c422 160a197 baf381a 160a197 baf381a 160a197 baf381a 160a197 baf381a 160a197 baf381a 160a197 baf381a 6e06b7a 160a197 6e06b7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 |
import gradio as gr
from transformers import AutoConfig
from huggingface_hub import list_models
import asyncio
from typing import List
import time
from functools import lru_cache
import json
from datetime import datetime, timedelta
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
# Credits: This implementation is derived from and builds upon the excellent work by gaunernst
# Original implementation: https://huggingface.co/spaces/gaunernst/kv-cache-calculator
search_cache = {}
POPULAR_MODELS = [
"Qwen/Qwen3-30B-A3B",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"microsoft/DialoGPT-medium",
"microsoft/DialoGPT-large",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"deepseek-ai/DeepSeek-V2-Chat",
"deepseek-ai/DeepSeek-V3-Base",
"google/gemma-2-9b",
"google/gemma-2-27b",
"Qwen/QwQ-32B-Preview",
"Qwen/Qwen2.5-72B-Instruct",
"anthropic/claude-3-haiku-20240307",
]
# Static GPU specifications (performance specs don't change, only prices do)
# All GPUs with SM_80+ compute capability (Flash Attention support)
GPU_SPECS = {
# Consumer RTX 30 Series (Ampere - GA102/GA104/GA106) - SM_8.6
"RTX 3060": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 13.0, "category": "Consumer"},
"RTX 3060 Ti": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 16.2, "category": "Consumer"},
"RTX 3070": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 20.3, "category": "Consumer"},
"RTX 3070 Ti": {"memory_gb": 8, "compute_capability": "8.6", "tflops_fp32": 21.7, "category": "Consumer"},
"RTX 3080": {"memory_gb": 10, "compute_capability": "8.6", "tflops_fp32": 29.8, "category": "Consumer"},
"RTX 3080 Ti": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 34.1, "category": "Consumer"},
"RTX 3090": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 35.6, "category": "Consumer"},
"RTX 3090 Ti": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 40.0, "category": "Consumer"},
# Consumer RTX 40 Series (Ada Lovelace - AD102/AD103/AD104/AD106/AD107) - SM_8.9
"RTX 4060": {"memory_gb": 8, "compute_capability": "8.9", "tflops_fp32": 15.1, "category": "Consumer"},
"RTX 4060 Ti": {"memory_gb": 8, "compute_capability": "8.9", "tflops_fp32": 22.1, "category": "Consumer"},
"RTX 4060 Ti 16GB": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 22.1, "category": "Consumer"},
"RTX 4070": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 29.1, "category": "Consumer"},
"RTX 4070 Super": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 35.5, "category": "Consumer"},
"RTX 4070 Ti": {"memory_gb": 12, "compute_capability": "8.9", "tflops_fp32": 40.1, "category": "Consumer"},
"RTX 4070 Ti Super": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 44.1, "category": "Consumer"},
"RTX 4080": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 48.7, "category": "Consumer"},
"RTX 4080 Super": {"memory_gb": 16, "compute_capability": "8.9", "tflops_fp32": 52.2, "category": "Consumer"},
"RTX 4090": {"memory_gb": 24, "compute_capability": "8.9", "tflops_fp32": 83.0, "category": "Consumer"},
# Consumer RTX 50 Series (Blackwell - GB202/GB203/GB205/GB206/GB207) - SM_10.0
"RTX 5060": {"memory_gb": 8, "compute_capability": "10.0", "tflops_fp32": 18.5, "category": "Consumer"},
"RTX 5060 Ti": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 28.2, "category": "Consumer"},
"RTX 5070": {"memory_gb": 12, "compute_capability": "10.0", "tflops_fp32": 35.1, "category": "Consumer"},
"RTX 5070 Ti": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 48.3, "category": "Consumer"},
"RTX 5080": {"memory_gb": 16, "compute_capability": "10.0", "tflops_fp32": 60.5, "category": "Consumer"},
"RTX 5090": {"memory_gb": 32, "compute_capability": "10.0", "tflops_fp32": 125.0, "category": "Consumer"},
# Professional/Workstation RTX A Series (Ampere) - SM_8.6
"RTX A2000": {"memory_gb": 12, "compute_capability": "8.6", "tflops_fp32": 8.0, "category": "Workstation"},
"RTX A4000": {"memory_gb": 16, "compute_capability": "8.6", "tflops_fp32": 19.2, "category": "Workstation"},
"RTX A4500": {"memory_gb": 20, "compute_capability": "8.6", "tflops_fp32": 23.7, "category": "Workstation"},
"RTX A5000": {"memory_gb": 24, "compute_capability": "8.6", "tflops_fp32": 27.8, "category": "Workstation"},
"RTX A6000": {"memory_gb": 48, "compute_capability": "8.6", "tflops_fp32": 38.7, "category": "Workstation"},
# Professional RTX 6000 Ada (Ada Lovelace) - SM_8.9
"RTX 6000 Ada": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.1, "category": "Workstation"},
# Datacenter A100 Series (Ampere) - SM_8.0
"A100 40GB": {"memory_gb": 40, "compute_capability": "8.0", "tflops_fp32": 19.5, "category": "Datacenter"},
"A100 80GB": {"memory_gb": 80, "compute_capability": "8.0", "tflops_fp32": 19.5, "category": "Datacenter"},
# Datacenter H100 Series (Hopper) - SM_9.0
"H100 80GB": {"memory_gb": 80, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"},
"H100 94GB": {"memory_gb": 94, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"},
# Datacenter H200 (Hopper) - SM_9.0
"H200 141GB": {"memory_gb": 141, "compute_capability": "9.0", "tflops_fp32": 67.0, "category": "Datacenter"},
# Datacenter B200 (Blackwell) - SM_10.0
"B200 180GB": {"memory_gb": 180, "compute_capability": "10.0", "tflops_fp32": 80.0, "category": "Datacenter"},
# Datacenter L40/L40S (Ada Lovelace) - SM_8.9
"L40": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.6, "category": "Datacenter"},
"L40S": {"memory_gb": 48, "compute_capability": "8.9", "tflops_fp32": 91.6, "category": "Datacenter"},
}
# Price cache with timestamp
price_cache = {}
PRICE_CACHE_DURATION = timedelta(hours=6) # Cache prices for 6 hours
def fetch_single_gpu_price(gpu_name):
"""Fetch price for a single GPU (used in parallel)"""
try:
print(f"Fetching price for {gpu_name}...")
price = get_gpu_price(gpu_name)
if price:
print(f"Found price for {gpu_name}: ${price}")
return gpu_name, price
else:
print(f"β No price found for {gpu_name}, using fallback")
return gpu_name, get_fallback_price(gpu_name)
except Exception as e:
print(f"β Error fetching {gpu_name}: {e}")
return gpu_name, get_fallback_price(gpu_name)
def preload_gpu_prices():
"""Pre-fetch all GPU prices in parallel on startup"""
print("Pre-loading GPU prices...")
start_time = time.time()
# Get list of GPUs to price
gpu_names = list(GPU_SPECS.keys())
# Use ThreadPoolExecutor for parallel requests
with ThreadPoolExecutor(max_workers=8) as executor:
# Submit all price fetch tasks
future_to_gpu = {executor.submit(fetch_single_gpu_price, gpu_name): gpu_name
for gpu_name in gpu_names}
# Collect results as they complete
for future in as_completed(future_to_gpu):
gpu_name, price = future.result()
# Store in cache with timestamp
cache_key = gpu_name.lower().replace(" ", "_")
price_cache[cache_key] = {
"price": price,
"timestamp": datetime.now()
}
end_time = time.time()
total_time = end_time - start_time
print(f"Loaded prices for {len(gpu_names)} GPUs in {total_time:.1f} seconds")
print(f"Cache contains {len(price_cache)} price entries")
def start_price_preloading():
"""Start price preloading in background thread"""
def preload_worker():
preload_gpu_prices()
# Start preloading in background
preload_thread = threading.Thread(target=preload_worker, daemon=True)
preload_thread.start()
print("Price preloading started in background...")
def get_gpu_price(gpu_name):
"""Get GPU price from curated pricing data"""
current_time = datetime.now()
# Check cache first
cache_key = gpu_name.lower().replace(" ", "_")
if cache_key in price_cache:
cached_data = price_cache[cache_key]
if current_time - cached_data["timestamp"] < PRICE_CACHE_DURATION:
return cached_data["price"]
price = get_fallback_price(gpu_name)
# Cache the result
price_cache[cache_key] = {
"price": price,
"timestamp": current_time
}
return price
def get_fallback_price(gpu_name):
"""Curated GPU pricing data"""
fallback_prices = {
# Consumer RTX 30 Series
"RTX 3060": 280,
"RTX 3060 Ti": 320,
"RTX 3070": 420,
"RTX 3070 Ti": 480,
"RTX 3080": 580,
"RTX 3080 Ti": 720,
"RTX 3090": 950,
"RTX 3090 Ti": 1100,
# Consumer RTX 40 Series
"RTX 4060": 300,
"RTX 4060 Ti": 380,
"RTX 4060 Ti 16GB": 480,
"RTX 4070": 580,
"RTX 4070 Super": 680,
"RTX 4070 Ti": 780,
"RTX 4070 Ti Super": 880,
"RTX 4080": 980,
"RTX 4080 Super": 880,
"RTX 4090": 1500,
# Consumer RTX 50 Series (Expected pricing)
"RTX 5060": 400,
"RTX 5060 Ti": 600,
"RTX 5070": 800,
"RTX 5070 Ti": 1000,
"RTX 5080": 1200,
"RTX 5090": 2000,
# Professional/Workstation GPUs
"RTX A2000": 650,
"RTX A4000": 1200,
"RTX A4500": 2200,
"RTX A5000": 2800,
"RTX A6000": 4500,
"RTX 6000 Ada": 6800,
# Datacenter GPUs (current enterprise pricing)
"A100 40GB": 12000,
"A100 80GB": 15000,
"H100 80GB": 30000,
"H100 94GB": 35000,
"H200 141GB": 40000,
"B200 180GB": 50000,
"L40": 9000,
"L40S": 10000,
}
return fallback_prices.get(gpu_name, 1000)
def search_models_fast(query: str, max_results: int = 30) -> List[str]:
if not query or len(query.strip()) < 1:
return POPULAR_MODELS[:15]
query = query.strip()
cache_key = f"{query.lower()}_{max_results}"
current_time = time.time()
if cache_key in search_cache:
cached_result, cache_time = search_cache[cache_key]
if current_time - cache_time < 300:
return cached_result
try:
print(f"Searching HF Hub for: {query}")
all_matches = []
seen_models = set()
for model in POPULAR_MODELS:
if query.lower() in model.lower() and model not in seen_models:
all_matches.append(model)
seen_models.add(model)
models = list_models(
search=query,
task="text-generation",
library="transformers",
sort="downloads",
direction=-1,
limit=max_results,
full=False
)
for model in models:
if model.id not in seen_models and len(all_matches) < max_results:
all_matches.append(model.id)
seen_models.add(model.id)
result = all_matches[:max_results]
search_cache[cache_key] = (result, current_time)
if len(search_cache) > 15:
oldest_key = min(search_cache.keys(), key=lambda k: search_cache[k][1])
del search_cache[oldest_key]
return result
except Exception as e:
print(f"Search error: {e}")
popular_matches = [model for model in POPULAR_MODELS if query.lower() in model.lower()]
return popular_matches if popular_matches else POPULAR_MODELS[:15]
def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str):
if not name or not name.strip():
raise gr.Error("Please search for and select a model first")
name = name.strip()
hf_token = hf_token.strip()
try:
cfg = AutoConfig.from_pretrained(
name,
trust_remote_code=True,
token=hf_token or None,
)
except Exception as e:
raise gr.Error(e)
use_mla = cfg.architectures[0].startswith(("DeepseekV2", "DeepseekV3"))
if hasattr(cfg, "text_config"):
cfg = cfg.text_config
num_layers = cfg.num_hidden_layers
num_attention_heads = cfg.num_attention_heads
num_kv_heads = getattr(cfg, "num_key_value_heads", num_attention_heads)
if use_mla:
attention_type = "MLA"
elif num_kv_heads == num_attention_heads:
attention_type = "MHA"
else:
attention_type = "GQA"
model_config = [
["num_layers", num_layers],
["max_ctx_len", cfg.max_position_embeddings],
["attention_type", attention_type],
["num_attention_heads", num_attention_heads],
["num_kv_heads", num_kv_heads],
]
if ctx_len > cfg.max_position_embeddings:
gr.Warning(
"Requested context length is larger than the max value supported by the model"
)
if use_mla:
kv_lora_rank = cfg.kv_lora_rank
qk_rope_head_dim = cfg.qk_rope_head_dim
nelems_per_token = num_layers * (kv_lora_rank + qk_rope_head_dim)
model_config.append(["kv_lora_rank", kv_lora_rank])
model_config.append(["qk_rope_head_dim", qk_rope_head_dim])
model_config.append(["calc_formula", f"{num_layers} * ({kv_lora_rank} + {qk_rope_head_dim})"])
else:
head_dim = getattr(cfg, "head_dim", cfg.hidden_size // num_attention_heads)
nelems_per_token = num_layers * num_kv_heads * head_dim * 2
model_config.append(["head_dim", head_dim])
if attention_type == "GQA":
kv_ratio = num_attention_heads // num_kv_heads
model_config.append(["gqa_ratio", f"{kv_ratio}:1"])
model_config.append(["calc_formula", f"{num_layers} * {num_kv_heads} * {head_dim} * 2"])
if dtype == "fp16/bf16":
nbytes_per_elem = 2
elif dtype == "fp8":
nbytes_per_elem = 1 + 2 / cfg.hidden_size # assume per-token scaling
elif dtype == "fp4":
nbytes_per_elem = 0.5 + 2 / 32 # 4-bit weights + scaling factor every 32 elements (MXFP4)
kv_cache_size = nelems_per_token * ctx_len * num_users * nbytes_per_elem / 1e9
# Get GPU recommendations with complete memory analysis using actual config
gpu_recommendations = recommend_gpus(
kv_cache_size_gb=kv_cache_size,
config=cfg,
dtype=dtype,
ctx_len=ctx_len,
num_users=num_users
)
return kv_cache_size, model_config, gpu_recommendations
DESCRIPTION = (
"Calculate KV cache memory requirements for transformer models. "
"Supports MHA, GQA, and MLA attention mechanisms with fp16/bf16, fp8, and fp4 data types."
)
def search_models_on_submit(search_query):
if not search_query or len(search_query.strip()) < 2:
return [
gr.Textbox(interactive=True),
gr.Dropdown(choices=[], value="", visible=False),
gr.Button(interactive=True)
]
query_stripped = search_query.strip()
search_results = search_models_fast(query_stripped, max_results=30)
if query_stripped not in search_results:
search_results.insert(0, query_stripped)
return [
gr.Textbox(interactive=True, value=query_stripped),
gr.Dropdown(
choices=search_results,
value=query_stripped,
visible=True,
info=f"Found {len(search_results)} models - select one"
),
gr.Button(interactive=True)
]
def update_selection_from_dropdown(dropdown_value):
return gr.Textbox(value=dropdown_value)
def estimate_model_memory(config, dtype):
"""Estimate model weight memory requirements in GB using actual config object"""
try:
if not config:
return 5.0 # Default fallback
# Extract parameters for calculation
num_layers = getattr(config, 'num_hidden_layers', getattr(config, 'num_layers', 32))
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096))
vocab_size = getattr(config, 'vocab_size', 50000)
intermediate_size = getattr(config, 'intermediate_size', hidden_size * 4)
# DeepSeek V3 specific parameter calculation following the exact formula
# Check if this is DeepSeek V3 architecture
is_deepseek_v3 = (getattr(config, 'model_type', '') == 'deepseek_v3' or
any('deepseek' in arch.lower() for arch in getattr(config, 'architectures', [])))
if is_deepseek_v3 and hasattr(config, 'q_lora_rank'):
# DeepSeek V3 specific calculation
# Config constants
L = num_layers # 61
H = hidden_size # 7168
I = intermediate_size # 18432
I_moe = getattr(config, 'moe_intermediate_size', 2048) # 2048
n_h = getattr(config, 'num_attention_heads', 128) # 128
r_q = getattr(config, 'q_lora_rank', 1536) # 1536
r_kv = getattr(config, 'kv_lora_rank', 512) # 512
V = vocab_size # 129,280
# Additional config values
qk_nope_head_dim = getattr(config, 'qk_nope_head_dim', 128)
qk_rope_head_dim = getattr(config, 'qk_rope_head_dim', 64)
v_head_dim = getattr(config, 'v_head_dim', 128)
# Attention per layer calculation
# W_q,a: H Γ r_q
w_q_a = H * r_q
# W_q,b: r_q Γ n_h Γ (qk_nope + qk_rope)
w_q_b = r_q * n_h * (qk_nope_head_dim + qk_rope_head_dim)
# W_kv,a: H Γ (r_kv + qk_rope)
w_kv_a = H * (r_kv + qk_rope_head_dim)
# W_kv,b: r_kv Γ n_h Γ (qk_nope + v)
w_kv_b = r_kv * n_h * (qk_nope_head_dim + v_head_dim)
# W_o: (n_h Γ v) Γ H
w_o = (n_h * v_head_dim) * H
attention_per_layer = w_q_a + w_q_b + w_kv_a + w_kv_b + w_o
total_attention = L * attention_per_layer
# Dense FFN layers (first 3 layers)
dense_ffn_per_layer = 3 * H * I # 3 projections: gate, up, down
total_dense_ffn = 3 * dense_ffn_per_layer # 3 dense layers
# MoE FFN layers (remaining 58 layers)
moe_ffn_per_expert = 3 * H * I_moe
n_routed_experts = getattr(config, 'n_routed_experts', 256) # 256
n_shared_experts = getattr(config, 'n_shared_experts', 1) # 1
experts_per_moe_layer = n_routed_experts + n_shared_experts # 257
moe_ffn_per_layer = experts_per_moe_layer * moe_ffn_per_expert
moe_layers = L - 3 # 58 MoE layers
total_moe_ffn = moe_layers * moe_ffn_per_layer
# Embeddings + LM head (untied)
embeddings_and_head = 2 * V * H
# Total parameters
total_params = total_attention + total_dense_ffn + total_moe_ffn + embeddings_and_head
print(f"DEBUG: DeepSeek V3 parameter breakdown:")
print(f" Attention ({L} layers): {total_attention/1e9:.2f}B")
print(f" Dense FFN (3 layers): {total_dense_ffn/1e9:.2f}B")
print(f" MoE FFN ({moe_layers} layers): {total_moe_ffn/1e9:.2f}B")
print(f" Embeddings + Head: {embeddings_and_head/1e9:.2f}B")
print(f" Total calculated: {total_params/1e9:.1f}B parameters")
else:
# Fallback to standard transformer calculation for other models
num_attention_heads = getattr(config, 'num_attention_heads', hidden_size // 64)
num_kv_heads = getattr(config, 'num_key_value_heads', num_attention_heads)
head_dim = getattr(config, 'head_dim', hidden_size // num_attention_heads)
# Standard attention calculation
q_params = hidden_size * (num_attention_heads * head_dim)
kv_params = hidden_size * (num_kv_heads * head_dim) * 2
o_params = (num_attention_heads * head_dim) * hidden_size
attention_params_per_layer = q_params + kv_params + o_params
attention_params = num_layers * attention_params_per_layer
# Standard FFN calculation
ffn_params = num_layers * (2 * hidden_size * intermediate_size + intermediate_size * hidden_size)
# Embeddings
embedding_params = vocab_size * hidden_size
# Other parameters
other_params = num_layers * 2 * hidden_size + hidden_size
total_params = embedding_params + attention_params + ffn_params + other_params
print(f"DEBUG: Standard transformer parameter breakdown:")
print(f" Embeddings: {embedding_params/1e9:.1f}B")
print(f" Attention: {attention_params/1e9:.1f}B")
print(f" FFN: {ffn_params/1e9:.1f}B")
print(f" Other: {other_params/1e9:.1f}B")
print(f" Total calculated: {total_params/1e9:.1f}B parameters")
# Convert to memory based on user-selected dtype
if dtype == "fp16/bf16":
bytes_per_param = 2
elif dtype == "fp8":
bytes_per_param = 1
elif dtype == "fp4":
bytes_per_param = 0.5
else:
bytes_per_param = 4 # fp32 fallback
model_memory_gb = (total_params * bytes_per_param) / (1024**3)
# Add minimal overhead (5% for loading)
model_memory_gb *= 1.05
return model_memory_gb
except Exception as e:
print(f"Error estimating model memory from config: {e}")
return 70.0 # Conservative fallback for large models
def estimate_activation_memory(ctx_len, num_users, config):
"""Estimate activation memory requirements in GB using actual config object"""
try:
if not config:
return 1.0 # Default fallback
# Extract parameters directly from config object
hidden_size = getattr(config, 'hidden_size', getattr(config, 'd_model', 4096))
batch_size = num_users
# For inference, activations are much smaller than training
# Only need to store activations for current forward pass, not gradients
# 1. Input/output activations: batch_size * ctx_len * hidden_size
io_activations = batch_size * ctx_len * hidden_size
# 2. Intermediate activations (only a few layers worth, not all)
# Most activations are computed and immediately used, not stored
intermediate_size = getattr(config, 'intermediate_size', hidden_size * 4)
stored_activations = batch_size * ctx_len * intermediate_size * 2 # Only ~2 layers worth
# 3. Attention scores for current layer (not all layers stored)
num_attention_heads = getattr(config, 'num_attention_heads', hidden_size // 64)
attention_scores = batch_size * num_attention_heads * ctx_len * ctx_len
# Total activation elements (much smaller for inference)
total_activation_elements = io_activations + stored_activations + attention_scores
# Convert to memory (fp16 = 2 bytes per element)
activation_memory_gb = (total_activation_elements * 2) / (1024**3)
# Cap at reasonable values for inference (activations shouldn't dominate)
max_reasonable_gb = max(5.0, ctx_len * batch_size / 10000) # Reasonable scaling
activation_memory_gb = min(activation_memory_gb, max_reasonable_gb)
return max(0.5, activation_memory_gb) # At least 500MB
except Exception as e:
print(f"Error estimating activation memory from config: {e}")
# Simple fallback based on context length
try:
# Much simpler formula for inference
fallback_gb = (num_users * ctx_len * 4096 * 4 * 2) / (1024**3) # Conservative
return min(10.0, max(0.5, fallback_gb)) # Cap at 10GB
except:
return 2.0 # Default 2GB
def calculate_multi_gpu_configs(total_memory_needed, suitable_gpus):
"""Calculate multi-GPU configurations for large models (power-of-2 for tensor parallelism)"""
multi_gpu_configs = []
# Power-of-2 configurations for tensor parallelism (TP) - max 8 for practical use
gpu_counts = [1, 2, 4, 8] # Only powers of 2, max 8 GPUs
# For large models, check all high-memory GPUs, not just top 3 cost-effective ones
gpus_to_check = suitable_gpus if total_memory_needed > 500 else suitable_gpus[:3]
for gpu in gpus_to_check:
for count in gpu_counts:
total_gpu_memory = gpu["memory_gb"] * count
if total_gpu_memory >= total_memory_needed:
# Calculate per-GPU memory utilization
memory_per_gpu = total_memory_needed / count
utilization = (memory_per_gpu / gpu["memory_gb"]) * 100
# Skip very inefficient configurations (< 30% utilization for multi-GPU)
if count > 1 and utilization < 30:
continue
# Calculate total cost
total_cost = gpu["price_usd"] * count
cost_per_tflop_total = total_cost / (gpu["tflops_fp32"] * count)
# Format configuration name with TP indication
if count == 1:
config_name = gpu['name']
else:
config_name = f"{count}x {gpu['name']} (TP={count})"
multi_gpu_configs.append({
"config": config_name,
"gpu_count": count,
"total_memory_gb": total_gpu_memory,
"memory_per_gpu": memory_per_gpu,
"utilization": utilization,
"total_cost": total_cost,
"cost_per_tflop": cost_per_tflop_total,
"base_gpu": gpu
})
# For single GPU, only add once
if count == 1:
break
# Sort by cost-effectiveness (total cost per TFLOP)
multi_gpu_configs.sort(key=lambda x: x["cost_per_tflop"])
return multi_gpu_configs[:8] # Return top 8 configurations
def recommend_gpus(kv_cache_size_gb, config=None, dtype="fp16/bf16", ctx_len=128000, num_users=1):
"""Recommend cost-effective GPU configurations (single and multi-GPU with tensor parallelism) for complete memory footprint"""
if not kv_cache_size_gb or kv_cache_size_gb <= 0:
print("DEBUG: KV cache size is 0 or invalid")
return []
# Calculate complete memory footprint using actual config object
model_memory_gb = estimate_model_memory(config, dtype)
activation_memory_gb = estimate_activation_memory(ctx_len, num_users, config)
# Total memory = Model weights + KV cache + Activations + Safety buffer
total_memory_needed = model_memory_gb + kv_cache_size_gb + activation_memory_gb + 1.0 # 1GB safety buffer
print(f"DEBUG: Memory breakdown - Model: {model_memory_gb:.1f}GB, KV: {kv_cache_size_gb:.1f}GB, Activations: {activation_memory_gb:.1f}GB, Total: {total_memory_needed:.1f}GB")
# Get all GPUs with real pricing (from cache or live fetch)
all_gpus = []
for gpu_name, specs in GPU_SPECS.items():
# Get real-time price (will use cache if available)
current_price = get_gpu_price(gpu_name)
if current_price:
cost_per_tflop = current_price / specs["tflops_fp32"]
all_gpus.append({
"name": gpu_name,
"memory_gb": specs["memory_gb"],
"compute_capability": specs["compute_capability"],
"tflops_fp32": specs["tflops_fp32"],
"price_usd": current_price,
"cost_per_tflop": cost_per_tflop,
"category": specs.get("category", "Consumer")
})
print(f"DEBUG: Found {len(all_gpus)} GPUs with pricing")
if not all_gpus:
print("DEBUG: No GPUs found with pricing")
return []
# Sort by cost-effectiveness for single GPU evaluation
all_gpus.sort(key=lambda x: x["cost_per_tflop"])
# Calculate multi-GPU configurations
multi_gpu_configs = calculate_multi_gpu_configs(total_memory_needed, all_gpus)
print(f"DEBUG: Generated {len(multi_gpu_configs)} GPU configurations")
if not multi_gpu_configs:
print("DEBUG: No valid GPU configurations found")
return []
# Format recommendations
recommendations = []
for i, config in enumerate(multi_gpu_configs):
rank = f"#{i+1}"
price_source = "Live" if config["base_gpu"]["name"].lower().replace(" ", "_") in price_cache else "Est"
# Format configuration display
config_display = f"{rank} {config['config']}"
# Calculate FLOP/dollar (TFLOPS per dollar)
total_tflops = config["base_gpu"]["tflops_fp32"] * config["gpu_count"]
flops_per_dollar = total_tflops / config['total_cost']
recommendations.append([
config_display,
f"{flops_per_dollar:.3f}",
f"{total_memory_needed:.1f}GB",
f"${config['total_cost']:.0f}"
])
return recommendations
with gr.Blocks(title="KV Cache Calculator", theme=gr.themes.Soft()) as demo:
gr.Markdown("# KV Cache Calculator")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model_search = gr.Textbox(
label="π Search Model",
placeholder="Type your model ID here.",
)
model_dropdown = gr.Dropdown(
label="π Select from Results",
choices=[],
value="",
visible=False,
info="Choose from search results"
)
with gr.Row():
gr.Markdown("**π‘ Tip:** Type model names like 'llama', 'qwen', 'mistral', then press Enter to search")
ctx_len = gr.Number(label="Context Length", value=128_000, minimum=1)
num_users = gr.Number(label="Number of Users", value=1, minimum=1)
dtype = gr.Dropdown(
label="KV Cache Data Type",
choices=["fp16/bf16", "fp8", "fp4"],
value="fp16/bf16"
)
hf_token = gr.Textbox(
label="HuggingFace Token (optional)",
type="password",
placeholder="For gated models"
)
calculate_btn = gr.Button("Calculate KV Cache Size", variant="primary")
with gr.Column():
cache_size = gr.Number(label="KV Cache Size (GB)", precision=2)
model_config = gr.Dataframe(
label="Model Configuration",
headers=["Parameter", "Value"],
datatype=["str", "str"],
wrap=True
)
gpu_recommendations = gr.Dataframe(
label="GPU Recommendations",
headers=["Configuration", "TFLOPS/$", "Memory", "Price"],
datatype=["str", "str", "str", "str"],
wrap=False,
visible=False
)
model_search.submit(
fn=search_models_on_submit,
inputs=[model_search],
outputs=[model_search, model_dropdown, calculate_btn],
show_progress="minimal"
)
model_dropdown.change(
fn=update_selection_from_dropdown,
inputs=[model_dropdown],
outputs=[model_search],
show_progress=False
)
def calculate_and_show_gpus(model_name, ctx_len, num_users, dtype, hf_token):
cache_size, model_config, gpu_recs = calculate(model_name, ctx_len, num_users, dtype, hf_token)
print(f"DEBUG: GPU recommendations count: {len(gpu_recs) if gpu_recs else 0}")
if gpu_recs:
print(f"DEBUG: First recommendation: {gpu_recs[0] if gpu_recs else 'None'}")
if gpu_recs:
return (
cache_size,
model_config,
gr.Dataframe(value=gpu_recs, visible=True)
)
else:
print("DEBUG: No GPU recommendations found, showing empty table")
return (
cache_size,
model_config,
gr.Dataframe(value=[], visible=False)
)
calculate_btn.click(
fn=calculate_and_show_gpus,
inputs=[model_search, ctx_len, num_users, dtype, hf_token],
outputs=[cache_size, model_config, gpu_recommendations]
)
demo.css = """
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
}
/* Make dataframes wider and prevent text wrapping */
.gradio-dataframe {
width: 100% !important;
min-width: 800px !important;
}
.gradio-dataframe table {
width: 100% !important;
table-layout: auto !important;
}
.gradio-dataframe td, .gradio-dataframe th {
white-space: nowrap !important;
padding: 8px 12px !important;
text-overflow: ellipsis !important;
min-width: 120px !important;
}
/* Style disabled textboxes to be clearly disabled */
.gradio-textbox:disabled,
.gradio-textbox[aria-disabled="true"] {
opacity: 0.6 !important;
background-color: #f5f5f5 !important;
color: #666 !important;
cursor: not-allowed !important;
border-color: #ccc !important;
}
/* Style placeholder text */
.gradio-textbox input::placeholder {
color: #999 !important;
font-style: italic;
}
/* Make disabled dropdowns more visually obvious */
.gradio-dropdown[data-testid="dropdown"]:disabled,
.gradio-dropdown[data-testid="dropdown"][aria-disabled="true"] {
opacity: 0.6 !important;
background-color: #f5f5f5 !important;
cursor: not-allowed !important;
}
/* Make disabled buttons more obvious too */
button:disabled {
opacity: 0.5 !important;
background-color: #e0e0e0 !important;
cursor: not-allowed !important;
}
"""
if __name__ == "__main__":
# Start price preloading in background before launching the app
start_price_preloading()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
allowed_paths=[],
app_kwargs={"docs_url": None, "redoc_url": None}
)
|