Commit
Β·
baf381a
1
Parent(s):
fb095c2
Implement real-time HuggingFace Hub search functionality
Browse files- Added live search of entire HF Hub database via API
- Implemented caching system for better performance
- Fixed textbox glitching by removing feedback loop
- Search now returns actual models from HF Hub, not just filtered static list
- Enhanced search with multi-tier approach (text-generation + broader search)
- Popular models prioritized in search results
- Added huggingface_hub dependency for API access
- app.py +169 -35
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,9 +1,101 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoConfig
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Credits: This implementation is derived from and builds upon the excellent work by gaunernst
|
5 |
# Original implementation: https://huggingface.co/spaces/gaunernst/kv-cache-calculator
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str):
|
9 |
hf_token = hf_token.strip()
|
@@ -22,8 +114,6 @@ def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str
|
|
22 |
cfg = cfg.text_config
|
23 |
|
24 |
num_layers = cfg.num_hidden_layers
|
25 |
-
|
26 |
-
# Determine attention mechanism type
|
27 |
num_attention_heads = cfg.num_attention_heads
|
28 |
num_kv_heads = getattr(cfg, "num_key_value_heads", num_attention_heads)
|
29 |
|
@@ -46,7 +136,6 @@ def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str
|
|
46 |
"Requested context length is larger than the max value supported by the model"
|
47 |
)
|
48 |
|
49 |
-
# Calculate KV cache elements per token based on attention mechanism
|
50 |
if use_mla:
|
51 |
kv_lora_rank = cfg.kv_lora_rank
|
52 |
qk_rope_head_dim = cfg.qk_rope_head_dim
|
@@ -58,7 +147,7 @@ def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str
|
|
58 |
|
59 |
else:
|
60 |
head_dim = getattr(cfg, "head_dim", cfg.hidden_size // num_attention_heads)
|
61 |
-
nelems_per_token = num_layers * num_kv_heads * head_dim * 2
|
62 |
|
63 |
model_config.append(["head_dim", head_dim])
|
64 |
if attention_type == "GQA":
|
@@ -77,41 +166,87 @@ def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str
|
|
77 |
return kv_cache_size, model_config
|
78 |
|
79 |
|
80 |
-
# Minimal description for iframe embedding
|
81 |
DESCRIPTION = (
|
82 |
"Calculate KV cache memory requirements for transformer models. "
|
83 |
"Supports MHA, GQA, and MLA attention mechanisms with fp16/bf16, fp8, and fp4 data types."
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
if __name__ == "__main__":
|
117 |
demo.launch(
|
@@ -119,7 +254,6 @@ if __name__ == "__main__":
|
|
119 |
server_port=7860,
|
120 |
share=False,
|
121 |
show_error=True,
|
122 |
-
# Enable embedding in iframes
|
123 |
allowed_paths=[],
|
124 |
app_kwargs={"docs_url": None, "redoc_url": None}
|
125 |
)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoConfig
|
3 |
+
from huggingface_hub import list_models
|
4 |
+
import asyncio
|
5 |
+
from typing import List
|
6 |
+
import time
|
7 |
+
from functools import lru_cache
|
8 |
|
9 |
# Credits: This implementation is derived from and builds upon the excellent work by gaunernst
|
10 |
# Original implementation: https://huggingface.co/spaces/gaunernst/kv-cache-calculator
|
11 |
|
12 |
+
search_cache = {}
|
13 |
+
|
14 |
+
POPULAR_MODELS = [
|
15 |
+
"Qwen/Qwen3-30B-A3B",
|
16 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
17 |
+
"meta-llama/Llama-3.1-70B-Instruct",
|
18 |
+
"microsoft/DialoGPT-medium",
|
19 |
+
"microsoft/DialoGPT-large",
|
20 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
21 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
22 |
+
"deepseek-ai/DeepSeek-V2-Chat",
|
23 |
+
"deepseek-ai/DeepSeek-V3-Base",
|
24 |
+
"google/gemma-2-9b",
|
25 |
+
"google/gemma-2-27b",
|
26 |
+
"Qwen/QwQ-32B-Preview",
|
27 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
28 |
+
"anthropic/claude-3-haiku-20240307",
|
29 |
+
]
|
30 |
+
|
31 |
+
def search_models(query: str, max_results: int = 50) -> List[str]:
|
32 |
+
if not query or len(query.strip()) < 1:
|
33 |
+
return POPULAR_MODELS[:15]
|
34 |
+
|
35 |
+
query = query.strip()
|
36 |
+
cache_key = f"{query.lower()}_{max_results}"
|
37 |
+
|
38 |
+
current_time = time.time()
|
39 |
+
if cache_key in search_cache:
|
40 |
+
cached_result, cache_time = search_cache[cache_key]
|
41 |
+
if current_time - cache_time < 300:
|
42 |
+
return cached_result
|
43 |
+
|
44 |
+
try:
|
45 |
+
print(f"Searching HF Hub for: {query}")
|
46 |
+
models = list_models(
|
47 |
+
search=query,
|
48 |
+
task="text-generation",
|
49 |
+
library="transformers",
|
50 |
+
sort="downloads",
|
51 |
+
direction=-1,
|
52 |
+
limit=max_results * 2,
|
53 |
+
full=False
|
54 |
+
)
|
55 |
+
|
56 |
+
all_matches = []
|
57 |
+
seen_models = set()
|
58 |
+
|
59 |
+
for model in POPULAR_MODELS:
|
60 |
+
if query.lower() in model.lower() and model not in seen_models:
|
61 |
+
all_matches.append(model)
|
62 |
+
seen_models.add(model)
|
63 |
+
|
64 |
+
for model in models:
|
65 |
+
if model.id not in seen_models and len(all_matches) < max_results:
|
66 |
+
all_matches.append(model.id)
|
67 |
+
seen_models.add(model.id)
|
68 |
+
|
69 |
+
if len(all_matches) < max_results // 2:
|
70 |
+
try:
|
71 |
+
broader_models = list_models(
|
72 |
+
search=query,
|
73 |
+
library="transformers",
|
74 |
+
sort="downloads",
|
75 |
+
direction=-1,
|
76 |
+
limit=max_results * 2
|
77 |
+
)
|
78 |
+
for model in broader_models:
|
79 |
+
if model.id not in seen_models and len(all_matches) < max_results:
|
80 |
+
model_id_lower = model.id.lower()
|
81 |
+
if any(keyword in model_id_lower for keyword in ['chat', 'instruct', 'base', 'model']):
|
82 |
+
all_matches.append(model.id)
|
83 |
+
seen_models.add(model.id)
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Broader search failed: {e}")
|
86 |
+
|
87 |
+
result = all_matches[:max_results]
|
88 |
+
search_cache[cache_key] = (result, current_time)
|
89 |
+
if len(search_cache) > 20:
|
90 |
+
oldest_key = min(search_cache.keys(), key=lambda k: search_cache[k][1])
|
91 |
+
del search_cache[oldest_key]
|
92 |
+
return result
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Search error: {e}")
|
96 |
+
popular_matches = [model for model in POPULAR_MODELS if query.lower() in model.lower()]
|
97 |
+
return popular_matches if popular_matches else POPULAR_MODELS[:15]
|
98 |
+
|
99 |
|
100 |
def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str):
|
101 |
hf_token = hf_token.strip()
|
|
|
114 |
cfg = cfg.text_config
|
115 |
|
116 |
num_layers = cfg.num_hidden_layers
|
|
|
|
|
117 |
num_attention_heads = cfg.num_attention_heads
|
118 |
num_kv_heads = getattr(cfg, "num_key_value_heads", num_attention_heads)
|
119 |
|
|
|
136 |
"Requested context length is larger than the max value supported by the model"
|
137 |
)
|
138 |
|
|
|
139 |
if use_mla:
|
140 |
kv_lora_rank = cfg.kv_lora_rank
|
141 |
qk_rope_head_dim = cfg.qk_rope_head_dim
|
|
|
147 |
|
148 |
else:
|
149 |
head_dim = getattr(cfg, "head_dim", cfg.hidden_size // num_attention_heads)
|
150 |
+
nelems_per_token = num_layers * num_kv_heads * head_dim * 2
|
151 |
|
152 |
model_config.append(["head_dim", head_dim])
|
153 |
if attention_type == "GQA":
|
|
|
166 |
return kv_cache_size, model_config
|
167 |
|
168 |
|
|
|
169 |
DESCRIPTION = (
|
170 |
"Calculate KV cache memory requirements for transformer models. "
|
171 |
"Supports MHA, GQA, and MLA attention mechanisms with fp16/bf16, fp8, and fp4 data types."
|
172 |
)
|
173 |
|
174 |
+
def search_and_update_models(query):
|
175 |
+
if not query or len(query.strip()) < 2:
|
176 |
+
return gr.Dropdown(choices=POPULAR_MODELS)
|
177 |
+
|
178 |
+
search_results = search_models(query.strip(), max_results=50)
|
179 |
+
if query.strip() not in search_results:
|
180 |
+
search_results.insert(0, query.strip())
|
181 |
+
return gr.Dropdown(choices=search_results, value=query.strip())
|
182 |
+
|
183 |
+
with gr.Blocks(title="KV Cache Calculator", theme=gr.themes.Soft()) as demo:
|
184 |
+
gr.Markdown("# KV Cache Calculator")
|
185 |
+
gr.Markdown(DESCRIPTION)
|
186 |
+
|
187 |
+
with gr.Row():
|
188 |
+
with gr.Column():
|
189 |
+
model_search = gr.Textbox(
|
190 |
+
label="π Search Models",
|
191 |
+
placeholder="Type model name (e.g., llama, qwen, mistral...)",
|
192 |
+
value="Qwen/Qwen3-30B-A3B",
|
193 |
+
info="Search the entire HuggingFace Hub database"
|
194 |
+
)
|
195 |
+
|
196 |
+
model_dropdown = gr.Dropdown(
|
197 |
+
label="π Select Model",
|
198 |
+
choices=POPULAR_MODELS,
|
199 |
+
value="Qwen/Qwen3-30B-A3B",
|
200 |
+
allow_custom_value=True,
|
201 |
+
info="Models matching your search - or type a custom model ID"
|
202 |
+
)
|
203 |
+
|
204 |
+
with gr.Row():
|
205 |
+
gr.Markdown("**π‘ Tip:** Search updates the dropdown with real HF Hub results")
|
206 |
+
|
207 |
+
ctx_len = gr.Number(label="Context Length", value=128_000, minimum=1)
|
208 |
+
num_users = gr.Number(label="Number of Users", value=1, minimum=1)
|
209 |
+
dtype = gr.Dropdown(
|
210 |
+
label="KV Cache Data Type",
|
211 |
+
choices=["fp16/bf16", "fp8", "fp4"],
|
212 |
+
value="fp16/bf16"
|
213 |
+
)
|
214 |
+
hf_token = gr.Textbox(
|
215 |
+
label="HuggingFace Token (optional)",
|
216 |
+
type="password",
|
217 |
+
placeholder="For gated models"
|
218 |
+
)
|
219 |
+
|
220 |
+
calculate_btn = gr.Button("Calculate KV Cache Size", variant="primary")
|
221 |
+
|
222 |
+
with gr.Column():
|
223 |
+
cache_size = gr.Number(label="KV Cache Size (GB)", precision=2)
|
224 |
+
model_config = gr.Dataframe(
|
225 |
+
label="Model Configuration",
|
226 |
+
headers=["Parameter", "Value"],
|
227 |
+
datatype=["str", "str"],
|
228 |
+
wrap=True
|
229 |
+
)
|
230 |
+
|
231 |
+
model_search.change(
|
232 |
+
fn=search_and_update_models,
|
233 |
+
inputs=[model_search],
|
234 |
+
outputs=[model_dropdown],
|
235 |
+
show_progress=False
|
236 |
+
)
|
237 |
+
|
238 |
+
calculate_btn.click(
|
239 |
+
fn=calculate,
|
240 |
+
inputs=[model_dropdown, ctx_len, num_users, dtype, hf_token],
|
241 |
+
outputs=[cache_size, model_config]
|
242 |
+
)
|
243 |
+
|
244 |
+
demo.css = """
|
245 |
+
.gradio-container {
|
246 |
+
max-width: 1000px !important;
|
247 |
+
margin: 0 auto !important;
|
248 |
+
}
|
249 |
+
"""
|
250 |
|
251 |
if __name__ == "__main__":
|
252 |
demo.launch(
|
|
|
254 |
server_port=7860,
|
255 |
share=False,
|
256 |
show_error=True,
|
|
|
257 |
allowed_paths=[],
|
258 |
app_kwargs={"docs_url": None, "redoc_url": None}
|
259 |
)
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
transformers
|
|
|
|
1 |
+
transformers>=4.21.0
|
2 |
+
huggingface_hub>=0.16.0
|