|
from gradio_client import Client |
|
import gradio as gr |
|
|
|
client = Client("kratadata/Colabor-Image-Finetune") |
|
|
|
def generate_image( |
|
prompt, lora_model, aspect_ratio, |
|
num_inference_steps, guidance_scale, |
|
seed, lora_scale |
|
): |
|
result = client.predict( |
|
lora_model=lora_model, |
|
prompt=prompt, |
|
aspect_ratio=aspect_ratio, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
lora_scale=lora_scale, |
|
api_name="/generate" |
|
) |
|
return result |
|
|
|
iface = gr.Interface( |
|
fn=generate_image, |
|
inputs=[ |
|
gr.Textbox(label="Prompt", value="policewoman"), |
|
gr.Dropdown(["group1"], label="LoRA Model"), |
|
gr.Dropdown(["1:1", "16:9", "9:16"], label="Aspect Ratio", value="1:1"), |
|
gr.Slider(1, 100, step=1, label="Inference Steps", value=28), |
|
gr.Slider(0, 20, step=0.1, label="Guidance Scale", value=3), |
|
gr.Number(label="Seed (-1 for random)", value=-1), |
|
gr.Slider(0, 5, step=0.1, label="LoRA Scale", value=1), |
|
], |
|
outputs=gr.Image(label="Generated Image"), |
|
title="LoRA Image Generator - kratadata/Colabor-Image-Finetune", |
|
) |
|
|
|
iface.launch() |
|
|