Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gradio_client import Client
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
client = Client("kratadata/Colabor-Image-Finetune")
|
5 |
+
|
6 |
+
def generate_image(
|
7 |
+
prompt, lora_model, aspect_ratio,
|
8 |
+
num_inference_steps, guidance_scale,
|
9 |
+
seed, lora_scale
|
10 |
+
):
|
11 |
+
result = client.predict(
|
12 |
+
lora_model=lora_model,
|
13 |
+
prompt=prompt,
|
14 |
+
aspect_ratio=aspect_ratio,
|
15 |
+
num_inference_steps=num_inference_steps,
|
16 |
+
guidance_scale=guidance_scale,
|
17 |
+
seed=seed,
|
18 |
+
lora_scale=lora_scale,
|
19 |
+
api_name="/generate"
|
20 |
+
)
|
21 |
+
return result
|
22 |
+
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=generate_image,
|
25 |
+
inputs=[
|
26 |
+
gr.Textbox(label="Prompt", value="policewoman"),
|
27 |
+
gr.Dropdown(["group1"], label="LoRA Model"),
|
28 |
+
gr.Dropdown(["1:1", "16:9", "9:16"], label="Aspect Ratio", value="1:1"),
|
29 |
+
gr.Slider(1, 100, step=1, label="Inference Steps", value=28),
|
30 |
+
gr.Slider(0, 20, step=0.1, label="Guidance Scale", value=3),
|
31 |
+
gr.Number(label="Seed (-1 for random)", value=-1),
|
32 |
+
gr.Slider(0, 5, step=0.1, label="LoRA Scale", value=1),
|
33 |
+
],
|
34 |
+
outputs=gr.Image(label="Generated Image"),
|
35 |
+
title="LoRA Image Generator - kratadata/Colabor-Image-Finetune",
|
36 |
+
)
|
37 |
+
|
38 |
+
iface.launch()
|