Spaces:
Sleeping
Sleeping
File size: 6,510 Bytes
9f50d19 a999793 a6f2237 a999793 9f50d19 a999793 9f50d19 a999793 7cde845 a999793 9f50d19 a999793 9f50d19 65ea836 a999793 9f50d19 a999793 9f50d19 a999793 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import streamlit as st
import pyttsx3
import threading
import wave
import io
import speech_recognition as sr
from gradio_client import Client
import streamlit.components.v1 as components
# Initialize session state
if "messages" not in st.session_state:
st.session_state["messages"] = [] # Store chat history
# Function to generate a response using Gradio client
def generate_response(query):
try:
client = Client("Gopikanth123/llama2")
result = client.predict(query=query, api_name="/predict")
return result
except Exception as e:
return f"Error communicating with the Gradio backend: {e}"
# Function to handle user input and bot response
def handle_user_input(user_input):
if user_input:
# Add user message to session state
st.session_state["messages"].append({"user": user_input})
# Generate bot response
response = generate_response(user_input)
st.session_state["messages"].append({"bot": response})
# Speak out bot response in a new thread to avoid blocking
threading.Thread(target=speak_text, args=(response,), daemon=True).start()
# Function to speak text (Voice Output)
def speak_text(text):
engine = pyttsx3.init()
engine.stop() # Ensure no previous loop is running
engine.say(text)
engine.runAndWait()
# Function to update chat history dynamically
def update_chat_history():
chat_history = st.session_state["messages"]
for msg in chat_history:
if "user" in msg:
st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True)
if "bot" in msg:
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
# Function to recognize speech from audio received as bytes
def recognize_speech_from_audio(audio_bytes):
st.info("Processing audio...")
# Convert byte stream to audio file
audio_data = io.BytesIO(audio_bytes)
recognizer = sr.Recognizer()
# Recognize speech from the audio data
with sr.AudioFile(audio_data) as source:
audio = recognizer.record(source)
try:
recognized_text = recognizer.recognize_google(audio)
st.session_state["user_input"] = recognized_text
st.success(f"Recognized Text: {recognized_text}")
handle_user_input(recognized_text)
except sr.UnknownValueError:
st.error("Sorry, I couldn't understand the audio.")
except sr.RequestError:
st.error("Could not request results; please check your internet connection.")
# JavaScript for audio recording and sending data to Streamlit
audio_recorder_html = """
<script>
let audioChunks = [];
let mediaRecorder;
function startRecording() {
navigator.mediaDevices.getUserMedia({ audio: true })
.then(function(stream) {
mediaRecorder = new MediaRecorder(stream);
mediaRecorder.ondataavailable = function(event) {
audioChunks.push(event.data);
};
mediaRecorder.onstop = function() {
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
const reader = new FileReader();
reader.onloadend = function() {
const audioBase64 = reader.result.split(',')[1];
window.parent.postMessage({ 'type': 'audio_data', 'audio': audioBase64 }, '*');
};
reader.readAsDataURL(audioBlob);
};
mediaRecorder.start();
});
}
function stopRecording() {
mediaRecorder.stop();
}
function handleStartStop() {
if (mediaRecorder && mediaRecorder.state === "recording") {
stopRecording();
} else {
startRecording();
}
}
</script>
<button onclick="handleStartStop()">Start/Stop Recording</button>
<p>Click the button to start/stop audio recording.</p>
"""
# Main Streamlit app
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
st.markdown(
"""
<style>
.stButton>button {
background-color: #6C63FF;
color: white;
font-size: 16px;
border-radius: 10px;
padding: 10px 20px;
}
.stTextInput>div>input {
border: 2px solid #6C63FF;
border-radius: 10px;
padding: 10px;
}
.chat-container {
background-color: #F7F9FC;
padding: 20px;
border-radius: 15px;
max-height: 400px;
overflow-y: auto;
}
.chat-bubble {
padding: 10px 15px;
border-radius: 15px;
margin: 5px 0;
max-width: 80%;
display: inline-block;
}
.user-message {
background-color: #D1C4E9;
text-align: left;
margin-left: auto;
}
.bot-message {
background-color: #BBDEFB;
text-align: left;
margin-right: auto;
}
.input-container {
display: flex;
justify-content: space-between;
gap: 10px;
padding: 10px 0;
}
</style>
""",
unsafe_allow_html=True
)
st.title("🤖 Chat with Llama2 Bot")
st.markdown(
"""
Welcome to the *Llama2 Chatbot*!
- *Type* your message below, or
- *Speak* to the bot using your microphone.
"""
)
# Display chat history
chat_history_container = st.container()
with chat_history_container:
# Add input field within a form
with st.form(key='input_form', clear_on_submit=True):
user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?")
submit_button = st.form_submit_button("Send")
# Handle form submission
if submit_button:
handle_user_input(user_input)
# Display JavaScript for audio recording
components.html(audio_recorder_html, height=300)
# Update chat history on every interaction
update_chat_history()
# Listening to the audio data sent by JavaScript
def process_audio_data():
audio_data = st.experimental_get_query_params().get('audio', [None])[0]
if audio_data:
recognize_speech_from_audio(audio_data)
# Call the function to process audio if available
process_audio_data()
|