incassi-api / app.py
GiusMagi's picture
Update app.py
a6f2c0d verified
raw
history blame
6.95 kB
import time, logging, json, traceback
from typing import Optional, Dict, Any
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from model_pipeline import Predictor, FEATURE_MAP, LABELS
import io
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from fastapi.responses import Response
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s"
)
log = logging.getLogger("api")
# ----------- input model -----------
class PredictIn(BaseModel):
include_neg: bool = False
Debitore_cluster: Optional[str] = None
Stato_Giudizio: Optional[str] = None
Cedente: Optional[str] = None
# alias con spazi/punti
Importo_iniziale_outstanding: Optional[float] = Field(None, alias="Importo iniziale outstanding")
Decreto_sospeso: Optional[str] = Field(None, alias="Decreto sospeso")
Notifica_Decreto: Optional[str] = Field(None, alias="Notifica Decreto")
Opposizione_al_decreto_ingiuntivo: Optional[str] = Field(None, alias="Opposizione al decreto ingiuntivo")
Ricorso_al_TAR: Optional[str] = Field(None, alias="Ricorso al TAR")
Sentenza_TAR: Optional[str] = Field(None, alias="Sentenza TAR")
Atto_di_Precetto: Optional[str] = Field(None, alias="Atto di Precetto")
Decreto_Ingiuntivo: Optional[str] = Field(None, alias="Decreto Ingiuntivo")
Sentenza_giudizio_opposizione: Optional[str] = Field(None, alias="Sentenza giudizio opposizione")
giorni_da_iscrizione: Optional[int] = None
giorni_da_cessione: Optional[int] = None
Zona: Optional[str] = None
model_config = {"populate_by_name": True, "extra": "allow"}
# ----------- app -----------
app = FastAPI(title="Predizione+SHAP API", version="1.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_methods=["*"], allow_headers=["*"]
)
t0 = time.time()
predictor: Predictor | None = None
@app.on_event("startup")
def _load_model():
global predictor
predictor = Predictor()
log.info(f"Model loaded in {predictor.load_seconds:.2f}s")
@app.get("/health")
def health():
return {"ok": predictor is not None, "uptime_s": time.time()-t0}
# Ordine delle classi (stesso usato dal modello)
_CLASS_ORDER = LABELS + ["100%"]
_CLASS_TO_IDX = {c: i for i, c in enumerate(_CLASS_ORDER)}
def _payload_from_inp(inp) -> dict:
"""Ricostruisce un dict 'payload' a partire dall'input pydantic."""
payload = {}
for k in FEATURE_MAP.values():
ak = k.replace(" ", "_").replace(".", "_")
payload[k] = getattr(inp, ak, None)
return payload
def _moving_average(y: np.ndarray, window: int = 9):
"""Applica una media mobile semplice per smoothing."""
w = int(window)
if w < 1:
return y
if w % 2 == 0:
w += 1
if w > len(y):
w = max(1, len(y)//2*2+1)
kernel = np.ones(w) / w
return np.convolve(y, kernel, mode="same")
def _class_curve_png(predictor, base_payload: dict, var_name: str,
vmin: int = 0, vmax: int = 3000,
n_base: int = 80, # punti reali (inferenze)
n_dense: int = 400, # punti interpolati
ma_window: int = 9,
title: str = "") -> bytes:
xs_base = np.linspace(vmin, vmax, n_base).round().astype(int)
xs_base = np.clip(xs_base, vmin, vmax)
xs_base = np.unique(xs_base)
# classe β†’ indice
y_base = []
for v in xs_base:
p = dict(base_payload)
p[var_name] = int(v)
out = predictor.predict_class_fast(p)
y_base.append(_CLASS_TO_IDX[out["class"]])
y_base = np.array(y_base, dtype=float)
# interpolazione
xs_dense = np.linspace(vmin, vmax, n_dense)
y_dense = np.interp(xs_dense, xs_base, y_base)
# smoothing
y_smooth = _moving_average(y_dense, ma_window)
y_smooth = np.clip(y_smooth, 0, len(_CLASS_ORDER)-1)
# plot
fig, ax = plt.subplots(figsize=(9, 4))
ax.plot(xs_dense, y_smooth, linewidth=2)
ax.set_xlim(vmin, vmax)
ax.set_ylim(-0.2, len(_CLASS_ORDER)-1 + 0.2)
ax.set_yticks(range(len(_CLASS_ORDER)))
ax.set_yticklabels(_CLASS_ORDER)
ax.set_xlabel(var_name)
ax.set_ylabel("Classe (smooth)")
ax.set_title(title or f"Classe (smooth) vs {var_name}")
ax.grid(True, linestyle="--", alpha=0.35)
fig.tight_layout()
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=150, bbox_inches="tight")
plt.close(fig)
return buf.getvalue()
@app.post("/predict")
def predict(inp: PredictIn):
if predictor is None:
raise HTTPException(503, "Model not ready")
# ricomponi payload secondo i nomi originali delle feature
payload: Dict[str, Any] = {}
for k in FEATURE_MAP.values():
ak = k.replace(" ", "_").replace(".", "_")
payload[k] = getattr(inp, ak, None)
payload["include_neg"] = inp.include_neg
try:
out = predictor.predict_dict(payload, include_neg=inp.include_neg)
# assicura chiave 'class' (nessuna alias confusion)
if "class_" in out and "class" not in out:
out["class"] = out.pop("class_")
log.info(json.dumps({
"event":"predict_ok",
"class": out.get("class"),
"stage": out.get("stage_used"),
"p100": round(out.get("p100", 0.0), 4)
}))
return out
except Exception as e:
log.exception("predict_error")
raise HTTPException(500, f"Prediction error: {e}") from e
@app.post("/plot/curve-class-cessione.png")
def plot_curve_class_cessione(inp: PredictIn,
vmin: int = 0, vmax: int = 3000,
n_base: int = 80, n_dense: int = 400, ma_window: int = 9):
if predictor is None:
raise HTTPException(503, "Model not ready")
base_payload = _payload_from_inp(inp)
img = _class_curve_png(
predictor, base_payload,
var_name="giorni_da_cessione",
vmin=vmin, vmax=vmax, n_base=n_base, n_dense=n_dense, ma_window=ma_window,
title="Classe predetta vs Giorni da Cessione"
)
return Response(content=img, media_type="image/png")
@app.post("/plot/curve-class-iscrizione.png")
def plot_curve_class_iscrizione(inp: PredictIn,
vmin: int = 0, vmax: int = 3000,
n_base: int = 80, n_dense: int = 400, ma_window: int = 9):
if predictor is None:
raise HTTPException(503, "Model not ready")
base_payload = _payload_from_inp(inp)
img = _class_curve_png(
predictor, base_payload,
var_name="giorni_da_iscrizione",
vmin=vmin, vmax=vmax, n_base=n_base, n_dense=n_dense, ma_window=ma_window,
title="Classe predetta (smooth) vs Giorni da Iscrizione"
)
return Response(content=img, media_type="image/png")