File size: 6,947 Bytes
ff7bcc1
 
 
 
 
a6f2c0d
3cdd126
 
 
 
 
 
ff7bcc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199ff37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff7bcc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199ff37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import time, logging, json, traceback
from typing import Optional, Dict, Any
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from model_pipeline import Predictor, FEATURE_MAP, LABELS
import io
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from fastapi.responses import Response

logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s"
)
log = logging.getLogger("api")

# ----------- input model -----------
class PredictIn(BaseModel):
    include_neg: bool = False
    Debitore_cluster: Optional[str] = None
    Stato_Giudizio: Optional[str] = None
    Cedente: Optional[str] = None

    # alias con spazi/punti
    Importo_iniziale_outstanding: Optional[float] = Field(None, alias="Importo iniziale outstanding")
    Decreto_sospeso: Optional[str] = Field(None, alias="Decreto sospeso")
    Notifica_Decreto: Optional[str] = Field(None, alias="Notifica Decreto")
    Opposizione_al_decreto_ingiuntivo: Optional[str] = Field(None, alias="Opposizione al decreto ingiuntivo")
    Ricorso_al_TAR: Optional[str] = Field(None, alias="Ricorso al TAR")
    Sentenza_TAR: Optional[str] = Field(None, alias="Sentenza TAR")
    Atto_di_Precetto: Optional[str] = Field(None, alias="Atto di Precetto")
    Decreto_Ingiuntivo: Optional[str] = Field(None, alias="Decreto Ingiuntivo")
    Sentenza_giudizio_opposizione: Optional[str] = Field(None, alias="Sentenza giudizio opposizione")
    giorni_da_iscrizione: Optional[int] = None
    giorni_da_cessione: Optional[int] = None
    Zona: Optional[str] = None

    model_config = {"populate_by_name": True, "extra": "allow"}

# ----------- app -----------
app = FastAPI(title="Predizione+SHAP API", version="1.0.0")
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"], allow_methods=["*"], allow_headers=["*"]
)

t0 = time.time()
predictor: Predictor | None = None

@app.on_event("startup")
def _load_model():
    global predictor
    predictor = Predictor()
    log.info(f"Model loaded in {predictor.load_seconds:.2f}s")

@app.get("/health")
def health():
    return {"ok": predictor is not None, "uptime_s": time.time()-t0}

# Ordine delle classi (stesso usato dal modello)
_CLASS_ORDER = LABELS + ["100%"]
_CLASS_TO_IDX = {c: i for i, c in enumerate(_CLASS_ORDER)}

def _payload_from_inp(inp) -> dict:
    """Ricostruisce un dict 'payload' a partire dall'input pydantic."""
    payload = {}
    for k in FEATURE_MAP.values():
        ak = k.replace(" ", "_").replace(".", "_")
        payload[k] = getattr(inp, ak, None)
    return payload

def _moving_average(y: np.ndarray, window: int = 9):
    """Applica una media mobile semplice per smoothing."""
    w = int(window)
    if w < 1: 
        return y
    if w % 2 == 0: 
        w += 1
    if w > len(y): 
        w = max(1, len(y)//2*2+1)
    kernel = np.ones(w) / w
    return np.convolve(y, kernel, mode="same")

def _class_curve_png(predictor, base_payload: dict, var_name: str,
                     vmin: int = 0, vmax: int = 3000,
                     n_base: int = 80,     # punti reali (inferenze)
                     n_dense: int = 400,   # punti interpolati
                     ma_window: int = 9,
                     title: str = "") -> bytes:
    xs_base = np.linspace(vmin, vmax, n_base).round().astype(int)
    xs_base = np.clip(xs_base, vmin, vmax)
    xs_base = np.unique(xs_base)

    # classe → indice
    y_base = []
    for v in xs_base:
        p = dict(base_payload)
        p[var_name] = int(v)
        out = predictor.predict_class_fast(p)
        y_base.append(_CLASS_TO_IDX[out["class"]])
    y_base = np.array(y_base, dtype=float)

    # interpolazione
    xs_dense = np.linspace(vmin, vmax, n_dense)
    y_dense = np.interp(xs_dense, xs_base, y_base)

    # smoothing
    y_smooth = _moving_average(y_dense, ma_window)
    y_smooth = np.clip(y_smooth, 0, len(_CLASS_ORDER)-1)

    # plot
    fig, ax = plt.subplots(figsize=(9, 4))
    ax.plot(xs_dense, y_smooth, linewidth=2)
    ax.set_xlim(vmin, vmax)
    ax.set_ylim(-0.2, len(_CLASS_ORDER)-1 + 0.2)
    ax.set_yticks(range(len(_CLASS_ORDER)))
    ax.set_yticklabels(_CLASS_ORDER)
    ax.set_xlabel(var_name)
    ax.set_ylabel("Classe (smooth)")
    ax.set_title(title or f"Classe (smooth) vs {var_name}")
    ax.grid(True, linestyle="--", alpha=0.35)
    fig.tight_layout()

    buf = io.BytesIO()
    fig.savefig(buf, format="png", dpi=150, bbox_inches="tight")
    plt.close(fig)
    return buf.getvalue()


@app.post("/predict")
def predict(inp: PredictIn):
    if predictor is None:
        raise HTTPException(503, "Model not ready")

    # ricomponi payload secondo i nomi originali delle feature
    payload: Dict[str, Any] = {}
    for k in FEATURE_MAP.values():
        ak = k.replace(" ", "_").replace(".", "_")
        payload[k] = getattr(inp, ak, None)
    payload["include_neg"] = inp.include_neg

    try:
        out = predictor.predict_dict(payload, include_neg=inp.include_neg)

        # assicura chiave 'class' (nessuna alias confusion)
        if "class_" in out and "class" not in out:
            out["class"] = out.pop("class_")

        log.info(json.dumps({
            "event":"predict_ok",
            "class": out.get("class"),
            "stage": out.get("stage_used"),
            "p100": round(out.get("p100", 0.0), 4)
        }))
        return out
    except Exception as e:
        log.exception("predict_error")
        raise HTTPException(500, f"Prediction error: {e}") from e
        
@app.post("/plot/curve-class-cessione.png")
def plot_curve_class_cessione(inp: PredictIn,
                              vmin: int = 0, vmax: int = 3000,
                              n_base: int = 80, n_dense: int = 400, ma_window: int = 9):
    if predictor is None:
        raise HTTPException(503, "Model not ready")
    base_payload = _payload_from_inp(inp)
    img = _class_curve_png(
        predictor, base_payload,
        var_name="giorni_da_cessione",
        vmin=vmin, vmax=vmax, n_base=n_base, n_dense=n_dense, ma_window=ma_window,
        title="Classe predetta  vs Giorni da Cessione"
    )
    return Response(content=img, media_type="image/png")

@app.post("/plot/curve-class-iscrizione.png")
def plot_curve_class_iscrizione(inp: PredictIn,
                                vmin: int = 0, vmax: int = 3000,
                                n_base: int = 80, n_dense: int = 400, ma_window: int = 9):
    if predictor is None:
        raise HTTPException(503, "Model not ready")
    base_payload = _payload_from_inp(inp)
    img = _class_curve_png(
        predictor, base_payload,
        var_name="giorni_da_iscrizione",
        vmin=vmin, vmax=vmax, n_base=n_base, n_dense=n_dense, ma_window=ma_window,
        title="Classe predetta (smooth) vs Giorni da Iscrizione"
    )
    return Response(content=img, media_type="image/png")