qwen4bit / README.md
George-API's picture
Upload README.md with huggingface_hub
ff20385 verified

A newer version of the Gradio SDK is available: 5.23.3

Upgrade
metadata
title: unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit (Research Training)
emoji: 🧪
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.17.0
app_file: app.py
pinned: false
license: mit

Model Fine-Tuning Project

Overview

  • Goal: Fine-tune unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit using pre-tokenized JSONL dataset
  • Model: unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
    • Important: Already 4-bit quantized - do not quantize further
  • Dataset: phi4-cognitive-dataset

⚠️ RESEARCH TRAINING PHASE ONLY: This space is being used for training purposes and does not provide interactive model outputs.

Dataset Specs

  • Entries under 2048 tokens
  • Fields: prompt_number, article_id, conversations
  • Process in ascending prompt_number order
  • Pre-tokenized dataset - no additional tokenization needed

Hardware

  • GPU: 1x L40S (48GB VRAM)
  • RAM: 62GB
  • CPU: 8 cores

Environment Variables (.env)

  • HF_TOKEN: Hugging Face API token
  • HF_USERNAME: Hugging Face username
  • HF_SPACE_NAME: Target space name

Files

1. app.py

  • Training status dashboard
  • No interactive model demo (research phase only)

2. transformers_config.json

  • Configuration for Hugging Face Transformers
  • Contains: model parameters, hardware settings, optimizer details
  • Specifies pre-tokenized dataset handling

3. run_cloud_training.py

  • Loads pre-tokenized dataset, sorts by prompt_number, initiates training
  1. Load and sort JSONL by prompt_number
  2. Use pre-tokenized input_ids directly (no tokenization)
  3. Initialize with parameters from config
  4. Execute training with metrics, checkpoints, error handling
  • Uses Hugging Face's Trainer API with custom pre-tokenized data collator

4. requirements.txt

  • Python dependencies: transformers, datasets, torch, etc.
  • Contains unsloth for optimized training

5. upload_to_space.py

  • Update model and space directly using HF API

Implementation Notes

Best Practices

  • Dataset is pre-tokenized and sorted by prompt_number
  • Settings stored in config file, avoiding hardcoding
  • Hardware-optimized training parameters
  • Gradient checkpointing and mixed precision training
  • Complete logging for monitoring progress

Model Repository

This space hosts a fine-tuned version of the unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit model.

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference