Spaces:
Running
Running
A newer version of the Gradio SDK is available:
5.23.3
metadata
title: unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit (Research Training)
emoji: 🧪
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.17.0
app_file: app.py
pinned: false
license: mit
Model Fine-Tuning Project
Overview
- Goal: Fine-tune unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit using pre-tokenized JSONL dataset
- Model:
unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
- Important: Already 4-bit quantized - do not quantize further
- Dataset:
phi4-cognitive-dataset
⚠️ RESEARCH TRAINING PHASE ONLY: This space is being used for training purposes and does not provide interactive model outputs.
Dataset Specs
- Entries under 2048 tokens
- Fields:
prompt_number
,article_id
,conversations
- Process in ascending
prompt_number
order - Pre-tokenized dataset - no additional tokenization needed
Hardware
- GPU: 1x L40S (48GB VRAM)
- RAM: 62GB
- CPU: 8 cores
Environment Variables (.env)
HF_TOKEN
: Hugging Face API tokenHF_USERNAME
: Hugging Face usernameHF_SPACE_NAME
: Target space name
Files
1. app.py
- Training status dashboard
- No interactive model demo (research phase only)
2. transformers_config.json
- Configuration for Hugging Face Transformers
- Contains: model parameters, hardware settings, optimizer details
- Specifies pre-tokenized dataset handling
3. run_cloud_training.py
- Loads pre-tokenized dataset, sorts by
prompt_number
, initiates training
- Load and sort JSONL by
prompt_number
- Use pre-tokenized input_ids directly (no tokenization)
- Initialize with parameters from config
- Execute training with metrics, checkpoints, error handling
- Uses Hugging Face's Trainer API with custom pre-tokenized data collator
4. requirements.txt
- Python dependencies:
transformers
,datasets
,torch
, etc. - Contains unsloth for optimized training
5. upload_to_space.py
- Update model and space directly using HF API
Implementation Notes
Best Practices
- Dataset is pre-tokenized and sorted by
prompt_number
- Settings stored in config file, avoiding hardcoding
- Hardware-optimized training parameters
- Gradient checkpointing and mixed precision training
- Complete logging for monitoring progress
Model Repository
This space hosts a fine-tuned version of the unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit model.
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference