|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer |
|
from torchvision import transforms |
|
from models import MAGVITv2, get_mask_schedule, MMadaModelLM |
|
from training.prompting_utils import UniversalPrompting |
|
from PIL import Image |
|
import spaces |
|
|
|
|
|
|
|
def image_transform(image, resolution=256, normalize=True): |
|
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image) |
|
image = transforms.CenterCrop((resolution, resolution))(image) |
|
image = transforms.ToTensor()(image) |
|
if normalize: |
|
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image) |
|
return image |
|
|
|
def add_gumbel_noise(logits, temperature): |
|
if abs(temperature) < 1e-9: |
|
return logits |
|
logits = logits.to(torch.float64) |
|
noise = torch.rand_like(logits, dtype=torch.float64) |
|
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20) |
|
return logits + temperature * standard_gumbel_noise |
|
|
|
def get_num_transfer_tokens(mask_index, steps): |
|
mask_num = mask_index.sum(dim=1, keepdim=True) |
|
steps = max(1, int(steps)) |
|
base = mask_num // steps |
|
remainder = mask_num % steps |
|
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base |
|
for i in range(mask_num.size(0)): |
|
if remainder[i] > 0 : |
|
num_transfer_tokens[i, :remainder[i].item()] += 1 |
|
return num_transfer_tokens |
|
|
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
DEFAULT_MODEL_PATH = "Gen-Verse/MMaDA-8B-MixCoT" |
|
MASK_ID = None |
|
MODEL = None |
|
TOKENIZER = None |
|
uni_prompting = None |
|
VQ_MODEL = None |
|
|
|
|
|
|
|
@spaces.GPU |
|
def load_model_and_tokenizer(): |
|
""" |
|
加载固定的 MMaDA-8B-MixCoT 模型和分词器。 |
|
""" |
|
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting |
|
|
|
|
|
if MODEL is not None: |
|
return f"Model 'MMaDA-8B-MixCoT' is already loaded. MASK_ID: {MASK_ID}" |
|
|
|
status_msg_parts = [f"Loading 'MMaDA-8B-MixCoT'..."] |
|
try: |
|
TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True) |
|
status_msg_parts.append(f"Tokenizer for 'MMaDA-8B-MixCoT' loaded.") |
|
|
|
MODEL = MMadaModelLM.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16).eval() |
|
status_msg_parts.append(f"Model 'MMaDA-8B-MixCoT' loaded to {DEVICE}.") |
|
|
|
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True) |
|
|
|
MASK_ID = 126336 |
|
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.") |
|
|
|
if TOKENIZER.pad_token_id is None: |
|
if TOKENIZER.eos_token_id is not None: |
|
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id |
|
TOKENIZER.pad_token = TOKENIZER.eos_token |
|
status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).") |
|
|
|
TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}" |
|
|
|
return " ".join(status_msg_parts) |
|
except Exception as e: |
|
MODEL, TOKENIZER, MASK_ID = None, None, None |
|
return f"Error loading model 'MMaDA-8B-MixCoT': {str(e)}" |
|
|
|
|
|
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask): |
|
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0: |
|
return [("Error in sequence data for visualization.", "ERROR")] |
|
current_x_ids_batch = current_x_ids_batch[:, prompt_len:] |
|
seq_ids = current_x_ids_batch[0].tolist() |
|
intermediate_tuples = [] |
|
for j, token_id_int in enumerate(seq_ids): |
|
try: |
|
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
except Exception: |
|
token_str = f"[ID:{token_id_int}]" |
|
|
|
label = "ERROR" |
|
if token_id_int == current_mask_id: |
|
token_str = "[MASK]" |
|
label = "MASK" |
|
else: |
|
label = "GEN" |
|
intermediate_tuples.append((token_str, label, token_id_int)) |
|
return intermediate_tuples |
|
|
|
@torch.no_grad() |
|
@spaces.GPU |
|
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"): |
|
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting, VQ_MODEL |
|
if MODEL is None or TOKENIZER is None or MASK_ID is None: |
|
yield Image.new("RGB", (512, 512), (255, 255, 255)), "Error: Model not loaded. Please load the model first." |
|
return |
|
if DEVICE == 'cuda': |
|
MODEL.to(DEVICE) |
|
VQ_MODEL.to(DEVICE) |
|
try: |
|
|
|
steps = int(steps) |
|
guidance_scale = float(guidance_scale) |
|
image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID |
|
prompt_text = [prompt_text] |
|
input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen') |
|
if guidance_scale > 0: |
|
uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen') |
|
else: |
|
uncond_input_ids, uncond_attention_mask = None, None |
|
mask_schedule = get_mask_schedule(mask_schedule) |
|
blank_image = Image.new("RGB", (512, 512), (255, 255, 255)) |
|
yield blank_image, "Starting generation..." |
|
for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise( |
|
input_ids=input_ids, uncond_input_ids=uncond_input_ids, attention_mask=attention_mask, |
|
uncond_attention_mask=uncond_attention_mask, temperature=1.0, timesteps=steps, |
|
guidance_scale=guidance_scale, noise_schedule=mask_schedule, noise_type="mask", |
|
seq_len=1024, vq_model=VQ_MODEL, uni_prompting=uni_prompting): |
|
yield image_step, status_msg_step |
|
finally: |
|
if DEVICE == 'cuda': |
|
MODEL.to('cpu') |
|
VQ_MODEL.to('cpu') |
|
torch.cuda.empty_cache() |
|
|
|
@torch.no_grad() |
|
@spaces.GPU |
|
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature, |
|
cfg_scale, remasking_strategy, thinking_mode_lm=False): |
|
global MODEL, TOKENIZER, MASK_ID, DEVICE |
|
if MODEL is None or TOKENIZER is None or MASK_ID is None: |
|
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." |
|
return |
|
if DEVICE == 'cuda': |
|
MODEL.to(DEVICE) |
|
try: |
|
|
|
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length) |
|
if thinking_mode_lm: |
|
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text |
|
m = [{"role": "user", "content": prompt_text}] |
|
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) |
|
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=4096)['input_ids'].to(DEVICE) |
|
raw_prompt_attention_mask = torch.ones_like(input_ids) |
|
batch_size, prompt_len = input_ids.shape[0], input_ids.shape[1] |
|
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) |
|
x[:, :prompt_len] = input_ids.clone() |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation..." |
|
|
|
num_blocks = gen_length // block_length |
|
steps_per_block = steps // num_blocks |
|
for num_block_iter in range(num_blocks): |
|
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length |
|
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length |
|
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) |
|
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) |
|
num_transfer_tokens_for_this_block = get_num_transfer_tokens(block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block) |
|
for i_step_in_block in range(steps_per_block): |
|
mask_index_global = (x == MASK_ID) |
|
model_output = MODEL(x) |
|
logits = model_output.logits |
|
logits_with_noise = add_gumbel_noise(logits, temperature=temperature) |
|
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) |
|
probs = F.softmax(logits.to(torch.float64), dim=-1) |
|
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) |
|
confidence_for_selection = torch.where(mask_index_global & block_masks_bool_current, x0_probs, -torch.inf) |
|
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) |
|
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) |
|
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] |
|
for j_batch_idx in range(batch_size): |
|
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item()) |
|
if k_val > 0: |
|
_, topk_indices_in_x = torch.topk(confidence_for_selection[j_batch_idx], k=k_val) |
|
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True |
|
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] |
|
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block}" |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg |
|
final_text_output = TOKENIZER.batch_decode(x[:, prompt_len:], skip_special_tokens=True) |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] |
|
finally: |
|
if DEVICE == 'cuda': |
|
MODEL.to('cpu') |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@torch.no_grad() |
|
@spaces.GPU |
|
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature, |
|
cfg_scale, remasking_strategy, thinking_mode_mmu=False): |
|
global MODEL, TOKENIZER, MASK_ID, DEVICE, VQ_MODEL |
|
if MODEL is None or TOKENIZER is None or MASK_ID is None: |
|
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." |
|
return |
|
if DEVICE == 'cuda': |
|
MODEL.to(DEVICE) |
|
VQ_MODEL.to(DEVICE) |
|
try: |
|
|
|
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length) |
|
if thinking_mode_mmu: |
|
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text |
|
m = [{"role": "user", "content": prompt_text}] |
|
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) |
|
image_vq_ids_tensor = None |
|
if uploaded_image_pil is not None: |
|
image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE).unsqueeze(0) |
|
image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349 |
|
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=4096)['input_ids'].to(DEVICE) |
|
raw_prompt_attention_mask = torch.ones_like(input_ids) |
|
if image_vq_ids_tensor is not None: |
|
input_ids = torch.cat([(torch.ones(1, 1) * 126089).to(DEVICE), (torch.ones(1, 1) * 126084).to(DEVICE), image_vq_ids_tensor, (torch.ones(1, 1) * 126085).to(DEVICE), input_ids], dim=1).long() |
|
batch_size, prompt_len = input_ids.shape[0], input_ids.shape[1] |
|
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) |
|
x[:, :prompt_len] = input_ids.clone() |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation..." |
|
|
|
num_blocks = gen_length // block_length |
|
steps_per_block = steps // num_blocks |
|
for num_block_iter in range(num_blocks): |
|
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length |
|
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length |
|
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) |
|
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) |
|
num_transfer_tokens_for_this_block = get_num_transfer_tokens(block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block) |
|
for i_step_in_block in range(steps_per_block): |
|
mask_index_global = (x == MASK_ID) |
|
model_output = MODEL(x) |
|
logits = model_output.logits |
|
logits_with_noise = add_gumbel_noise(logits, temperature=temperature) |
|
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) |
|
probs = F.softmax(logits.to(torch.float64), dim=-1) |
|
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) |
|
confidence_for_selection = torch.where(mask_index_global & block_masks_bool_current, x0_probs, -torch.inf) |
|
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) |
|
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) |
|
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] |
|
for j_batch_idx in range(batch_size): |
|
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), (mask_index_global & block_masks_bool_current)[j_batch_idx].sum().item()) |
|
if k_val > 0: |
|
_, topk_indices_in_x = torch.topk(confidence_for_selection[j_batch_idx], k=k_val) |
|
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True |
|
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] |
|
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block}" |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg |
|
final_text_output = TOKENIZER.batch_decode(x[:, prompt_len:], skip_special_tokens=True) |
|
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] |
|
finally: |
|
if DEVICE == 'cuda': |
|
MODEL.to('cpu') |
|
VQ_MODEL.to('cpu') |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
css_styles = """ |
|
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;} |
|
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;} |
|
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;} |
|
.highlighted-text span{padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6;} |
|
footer{display:none !important} |
|
#live-update-scrollable-box {max-height: 800px; overflow-y: auto !important; display: block;} |
|
#think_btn {background-color: #f3f4f6 !important; border: 1px solid #d0d0d0 !important; color: #111827 !important; font-size: 16px !important; font-weight: bold !important;} |
|
#think_btn:hover {background-color: #e0e0e0 !important; border: 1px solid #c0c0c0 !important; color: #222 !important;} |
|
#think_btn:active {background-color: #2563eb !important; border: 1px solid #b0b0b0 !important; color: white !important;} |
|
.model-badge {padding: 5px 10px; border-radius: 15px; font-weight: bold; margin: 0 5px; display: inline-block;} |
|
.active-model {background-color: #E879F9; color: white;} |
|
.soon-model {background-color: #E5E7EB; color: #6B7280; cursor: not-allowed;} |
|
""" |
|
|
|
def toggle_thinking_mode(current_thinking_mode): |
|
new_state = not current_thinking_mode |
|
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌" |
|
return new_state, gr.update(value=new_label) |
|
|
|
color_map_config = {"MASK": "lightgrey", "GEN": "#DCABFA"} |
|
|
|
theme = gr.themes.Ocean(primary_hue="fuchsia") |
|
|
|
with gr.Blocks(css=css_styles, theme=theme) as demo: |
|
thinking_mode_lm = gr.State(True) |
|
thinking_mode_mmu = gr.State(True) |
|
|
|
|
|
gr.HTML(""" |
|
<div align="center" style="margin-bottom: 20px;"> |
|
<img src='/gradio_api/file=title.png' width="160"> |
|
<p style="font-size: 16px; max-width: 800px; margin: 5px auto;"> |
|
MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation. |
|
</p> |
|
<p style="font-size: 15px;"> |
|
📄 <a href="https://arxiv.org/abs/2405.15809" target="_blank">Paper</a> | 💻 <a href="https://github.com/Gen-Verse/MMaDA" target="_blank">Code</a> |
|
</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; height: 100%;"> |
|
<div> |
|
<span class="model-badge active-model">MMaDA-8B-MixCoT</span> |
|
<span class="model-badge soon-model">MMaDA-8B-Max (coming soon)</span> |
|
</div> |
|
</div> |
|
""") |
|
with gr.Column(scale=2): |
|
model_load_status_box = gr.Textbox( |
|
label="Model Load Status", interactive=False, lines=3, max_lines=5 |
|
) |
|
|
|
|
|
gr.Markdown("## Part 1. Text Generation") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?") |
|
think_button_lm = gr.Button("Thinking Mode ✅", elem_id="think_btn") |
|
with gr.Accordion("Generation Parameters", open=True): |
|
|
|
with gr.Row(): |
|
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length") |
|
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps") |
|
with gr.Row(): |
|
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length") |
|
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") |
|
with gr.Row(): |
|
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale") |
|
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature") |
|
with gr.Row(): |
|
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3) |
|
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1) |
|
with gr.Column(scale=3): |
|
output_visualization_box_lm = gr.HighlightedText(label="Live Generation Process", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box") |
|
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"], |
|
["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"] |
|
], |
|
inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm], |
|
outputs=[output_visualization_box_lm, output_final_text_box_lm], |
|
fn=generate_viz_wrapper_lm, |
|
cache_examples=False |
|
) |
|
|
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Part 2. Multimodal Understanding") |
|
with gr.Row(): |
|
|
|
with gr.Column(scale=2): |
|
prompt_input_box_mmu = gr.Textbox(label="Enter your prompt:", lines=3, value="") |
|
think_button_mmu = gr.Button("Thinking Mode ✅", elem_id="think_btn") |
|
with gr.Accordion("Generation Parameters", open=True): |
|
with gr.Row(): |
|
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length") |
|
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps") |
|
with gr.Row(): |
|
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=64, step=32, label="Block Length") |
|
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") |
|
with gr.Row(): |
|
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale") |
|
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature") |
|
with gr.Row(): |
|
image_upload_box = gr.Image(type="pil", label="Upload Image") |
|
with gr.Row(): |
|
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3) |
|
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1) |
|
with gr.Column(scale=3): |
|
output_visualization_box_mmu = gr.HighlightedText(label="Token Sequence (Live Update)", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box") |
|
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["figs/geo.png", "In the given figure, a square ABCD is inscribed in a circle with center O. Point P is located on side CD. What is the value of angle APB?", 256, 512, 64, 1, 0, "low_confidence"], |
|
["figs/bus.jpg", "What are the colors of the bus?", 256, 512, 64, 1, 0, "low_confidence"] |
|
], |
|
inputs=[image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu], |
|
outputs=[output_visualization_box_mmu, output_final_text_box_mmu], |
|
fn=generate_viz_wrapper, |
|
cache_examples=False |
|
) |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Part 3. Text-to-Image Generation") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.") |
|
with gr.Accordion("Generation Parameters", open=True): |
|
with gr.Row(): |
|
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps") |
|
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale") |
|
with gr.Row(): |
|
scheduler_radio_t2i = gr.Radio(choices=["cosine", "sigmoid", "linear"], value="cosine", label="Scheduler") |
|
with gr.Row(): |
|
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3) |
|
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1) |
|
with gr.Column(scale=3): |
|
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil") |
|
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False) |
|
gr.Examples( |
|
examples=[ |
|
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"], |
|
["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"] |
|
], |
|
inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i], |
|
outputs=[output_image_t2i, output_status_t2i], |
|
fn=generate_viz_wrapper_t2i, |
|
cache_examples=False |
|
) |
|
|
|
|
|
def initialize_app_state(): |
|
global VQ_MODEL |
|
print("Loading VQ_MODEL for the first time...") |
|
VQ_MODEL = MAGVITv2().from_pretrained("showlab/magvitv2") |
|
print("VQ_MODEL loaded to CPU.") |
|
|
|
status = load_model_and_tokenizer() |
|
|
|
return status, True, gr.update(value="Thinking Mode ✅"), True, gr.update(value="Thinking Mode ✅") |
|
|
|
demo.load( |
|
fn=initialize_app_state, |
|
inputs=None, |
|
outputs=[ |
|
model_load_status_box, |
|
thinking_mode_lm, |
|
think_button_lm, |
|
thinking_mode_mmu, |
|
think_button_mmu |
|
], |
|
queue=True |
|
) |
|
|
|
|
|
clear_button_ui_lm.click(fn=lambda: (None, None), inputs=None, outputs=[output_visualization_box_lm, output_final_text_box_lm], queue=False) |
|
clear_button_ui_mmu.click(fn=lambda: (None, None, None), inputs=None, outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu], queue=False) |
|
clear_button_ui_t2i.click(fn=lambda: (None, ""), inputs=None, outputs=[output_image_t2i, output_status_t2i], queue=False) |
|
|
|
|
|
think_button_lm.click(fn=toggle_thinking_mode, inputs=[thinking_mode_lm], outputs=[thinking_mode_lm, think_button_lm]) |
|
think_button_mmu.click(fn=toggle_thinking_mode, inputs=[thinking_mode_mmu], outputs=[thinking_mode_mmu, think_button_mmu]) |
|
|
|
|
|
run_button_ui_lm.click(fn=generate_viz_wrapper_lm, inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm, thinking_mode_lm], outputs=[output_visualization_box_lm, output_final_text_box_lm]) |
|
run_button_ui_mmu.click(fn=generate_viz_wrapper, inputs=[image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu, thinking_mode_mmu], outputs=[output_visualization_box_mmu, output_final_text_box_mmu]) |
|
run_button_ui_t2i.click(fn=generate_viz_wrapper_t2i, inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i], outputs=[output_image_t2i, output_status_t2i]) |
|
|
|
if __name__ == "__main__": |
|
print(f"Starting Gradio App. Attempting to use device: {DEVICE}") |
|
demo.launch(allowed_paths=["title.png", "figs"]) |