MMaDA / app.py
YucYux
tried to fix model loading bug
ca6c4d6
raw
history blame
29.4 kB
import gradio as gr
import torch
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer
from torchvision import transforms
from models import MAGVITv2, get_mask_schedule, MMadaModelLM
from training.prompting_utils import UniversalPrompting
from PIL import Image
import spaces
# --- 辅助函数 (未修改) ---
def image_transform(image, resolution=256, normalize=True):
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
image = transforms.CenterCrop((resolution, resolution))(image)
image = transforms.ToTensor()(image)
if normalize:
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
return image
def add_gumbel_noise(logits, temperature):
if abs(temperature) < 1e-9:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20)
return logits + temperature * standard_gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
mask_num = mask_index.sum(dim=1, keepdim=True)
steps = max(1, int(steps))
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base
for i in range(mask_num.size(0)):
if remainder[i] > 0 :
num_transfer_tokens[i, :remainder[i].item()] += 1
return num_transfer_tokens
# --- 全局变量和模型配置 ---
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# 固定使用 MMaDA-8B-MixCoT 模型
DEFAULT_MODEL_PATH = "Gen-Verse/MMaDA-8B-MixCoT"
MASK_ID = None
MODEL = None
TOKENIZER = None
uni_prompting = None
VQ_MODEL = None
# --- 核心模型加载函数 (已简化) ---
@spaces.GPU
def load_model_and_tokenizer():
"""
加载固定的 MMaDA-8B-MixCoT 模型和分词器。
"""
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting
# 如果模型已经加载,则直接返回
if MODEL is not None:
return f"Model 'MMaDA-8B-MixCoT' is already loaded. MASK_ID: {MASK_ID}"
status_msg_parts = [f"Loading 'MMaDA-8B-MixCoT'..."]
try:
TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True)
status_msg_parts.append(f"Tokenizer for 'MMaDA-8B-MixCoT' loaded.")
MODEL = MMadaModelLM.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16).eval()
status_msg_parts.append(f"Model 'MMaDA-8B-MixCoT' loaded to {DEVICE}.")
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True)
MASK_ID = 126336
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.")
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
TOKENIZER.pad_token = TOKENIZER.eos_token
status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).")
TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}"
return " ".join(status_msg_parts)
except Exception as e:
MODEL, TOKENIZER, MASK_ID = None, None, None
return f"Error loading model 'MMaDA-8B-MixCoT': {str(e)}"
# --- 可视化和生成函数 (generate_viz_wrapper* 系列,已修复全局变量问题) ---
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask):
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0:
return [("Error in sequence data for visualization.", "ERROR")]
current_x_ids_batch = current_x_ids_batch[:, prompt_len:]
seq_ids = current_x_ids_batch[0].tolist()
intermediate_tuples = []
for j, token_id_int in enumerate(seq_ids):
try:
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False)
except Exception:
token_str = f"[ID:{token_id_int}]"
label = "ERROR"
if token_id_int == current_mask_id:
token_str = "[MASK]"
label = "MASK"
else:
label = "GEN"
intermediate_tuples.append((token_str, label, token_id_int))
return intermediate_tuples
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"):
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting, VQ_MODEL
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield Image.new("RGB", (512, 512), (255, 255, 255)), "Error: Model not loaded. Please load the model first."
return
if DEVICE == 'cuda':
MODEL.to(DEVICE)
VQ_MODEL.to(DEVICE)
try:
# ... (函数实现和之前一样)
steps = int(steps)
guidance_scale = float(guidance_scale)
image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID
prompt_text = [prompt_text]
input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen')
if guidance_scale > 0:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen')
else:
uncond_input_ids, uncond_attention_mask = None, None
mask_schedule = get_mask_schedule(mask_schedule)
blank_image = Image.new("RGB", (512, 512), (255, 255, 255))
yield blank_image, "Starting generation..."
for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise(
input_ids=input_ids, uncond_input_ids=uncond_input_ids, attention_mask=attention_mask,
uncond_attention_mask=uncond_attention_mask, temperature=1.0, timesteps=steps,
guidance_scale=guidance_scale, noise_schedule=mask_schedule, noise_type="mask",
seq_len=1024, vq_model=VQ_MODEL, uni_prompting=uni_prompting):
yield image_step, status_msg_step
finally:
if DEVICE == 'cuda':
MODEL.to('cpu')
VQ_MODEL.to('cpu')
torch.cuda.empty_cache()
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_lm=False):
global MODEL, TOKENIZER, MASK_ID, DEVICE
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
if DEVICE == 'cuda':
MODEL.to(DEVICE)
try:
# ... (函数实现和之前一样)
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length)
if thinking_mode_lm:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=4096)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = torch.ones_like(input_ids) # Dummy mask, adjust if needed
batch_size, prompt_len = input_ids.shape[0], input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation..."
# ... (rest of the logic is the same)
num_blocks = gen_length // block_length
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
confidence_for_selection = torch.where(mask_index_global & block_masks_bool_current, x0_probs, -torch.inf)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item())
if k_val > 0:
_, topk_indices_in_x = torch.topk(confidence_for_selection[j_batch_idx], k=k_val)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block}"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_text_output = TOKENIZER.batch_decode(x[:, prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0]
finally:
if DEVICE == 'cuda':
MODEL.to('cpu')
torch.cuda.empty_cache()
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_mmu=False):
global MODEL, TOKENIZER, MASK_ID, DEVICE, VQ_MODEL
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
if DEVICE == 'cuda':
MODEL.to(DEVICE)
VQ_MODEL.to(DEVICE)
try:
# ... (函数实现和之前一样)
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length)
if thinking_mode_mmu:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
image_vq_ids_tensor = None
if uploaded_image_pil is not None:
image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE).unsqueeze(0)
image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=4096)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = torch.ones_like(input_ids) # Dummy mask
if image_vq_ids_tensor is not None:
input_ids = torch.cat([(torch.ones(1, 1) * 126089).to(DEVICE), (torch.ones(1, 1) * 126084).to(DEVICE), image_vq_ids_tensor, (torch.ones(1, 1) * 126085).to(DEVICE), input_ids], dim=1).long()
batch_size, prompt_len = input_ids.shape[0], input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation..."
# ... (rest of the logic is the same)
num_blocks = gen_length // block_length
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
confidence_for_selection = torch.where(mask_index_global & block_masks_bool_current, x0_probs, -torch.inf)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), (mask_index_global & block_masks_bool_current)[j_batch_idx].sum().item())
if k_val > 0:
_, topk_indices_in_x = torch.topk(confidence_for_selection[j_batch_idx], k=k_val)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block}"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_text_output = TOKENIZER.batch_decode(x[:, prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0]
finally:
if DEVICE == 'cuda':
MODEL.to('cpu')
VQ_MODEL.to('cpu')
torch.cuda.empty_cache()
# --- UI定义 ---
css_styles = """
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;}
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;}
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;}
.highlighted-text span{padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6;}
footer{display:none !important}
#live-update-scrollable-box {max-height: 800px; overflow-y: auto !important; display: block;}
#think_btn {background-color: #f3f4f6 !important; border: 1px solid #d0d0d0 !important; color: #111827 !important; font-size: 16px !important; font-weight: bold !important;}
#think_btn:hover {background-color: #e0e0e0 !important; border: 1px solid #c0c0c0 !important; color: #222 !important;}
#think_btn:active {background-color: #2563eb !important; border: 1px solid #b0b0b0 !important; color: white !important;}
.model-badge {padding: 5px 10px; border-radius: 15px; font-weight: bold; margin: 0 5px; display: inline-block;}
.active-model {background-color: #E879F9; color: white;}
.soon-model {background-color: #E5E7EB; color: #6B7280; cursor: not-allowed;}
"""
def toggle_thinking_mode(current_thinking_mode):
new_state = not current_thinking_mode
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
return new_state, gr.update(value=new_label)
color_map_config = {"MASK": "lightgrey", "GEN": "#DCABFA"}
theme = gr.themes.Ocean(primary_hue="fuchsia")
with gr.Blocks(css=css_styles, theme=theme) as demo:
thinking_mode_lm = gr.State(True) # MixCoT模型默认开启
thinking_mode_mmu = gr.State(True) # MixCoT模型默认开启
# --- 标题和模型信息 (已修改) ---
gr.HTML("""
<div align="center" style="margin-bottom: 20px;">
<img src='/gradio_api/file=title.png' width="160">
<p style="font-size: 16px; max-width: 800px; margin: 5px auto;">
MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation.
</p>
<p style="font-size: 15px;">
📄 <a href="https://arxiv.org/abs/2405.15809" target="_blank">Paper</a>&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;💻 <a href="https://github.com/Gen-Verse/MMaDA" target="_blank">Code</a>
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; height: 100%;">
<div>
<span class="model-badge active-model">MMaDA-8B-MixCoT</span>
<span class="model-badge soon-model">MMaDA-8B-Max (coming soon)</span>
</div>
</div>
""")
with gr.Column(scale=2):
model_load_status_box = gr.Textbox(
label="Model Load Status", interactive=False, lines=3, max_lines=5
)
# --- Part 1. 文本生成 ---
gr.Markdown("## Part 1. Text Generation")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?")
think_button_lm = gr.Button("Thinking Mode ✅", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
# ... 参数滑块 (未修改)
with gr.Row():
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length")
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps")
with gr.Row():
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length")
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale")
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature")
with gr.Row():
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3)
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
output_visualization_box_lm = gr.HighlightedText(label="Live Generation Process", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box")
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
# 仅保留 MixCoT 的示例 (已修改)
gr.Examples(
examples=[
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"],
["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"]
],
inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm],
outputs=[output_visualization_box_lm, output_final_text_box_lm],
fn=generate_viz_wrapper_lm,
cache_examples=False
)
# --- Part 2 & 3 和事件处理器 (结构类似,已做简化) ---
gr.Markdown("---")
gr.Markdown("## Part 2. Multimodal Understanding")
with gr.Row():
# ... (Part 2 UI 结构未变)
with gr.Column(scale=2):
prompt_input_box_mmu = gr.Textbox(label="Enter your prompt:", lines=3, value="")
think_button_mmu = gr.Button("Thinking Mode ✅", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length")
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps")
with gr.Row():
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=64, step=32, label="Block Length")
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale")
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature")
with gr.Row():
image_upload_box = gr.Image(type="pil", label="Upload Image")
with gr.Row():
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3)
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
output_visualization_box_mmu = gr.HighlightedText(label="Token Sequence (Live Update)", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box")
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
# 仅保留 MixCoT 的 MMU 示例
gr.Examples(
examples=[
["figs/geo.png", "In the given figure, a square ABCD is inscribed in a circle with center O. Point P is located on side CD. What is the value of angle APB?", 256, 512, 64, 1, 0, "low_confidence"],
["figs/bus.jpg", "What are the colors of the bus?", 256, 512, 64, 1, 0, "low_confidence"]
],
inputs=[image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu],
outputs=[output_visualization_box_mmu, output_final_text_box_mmu],
fn=generate_viz_wrapper,
cache_examples=False
)
gr.Markdown("---")
gr.Markdown("## Part 3. Text-to-Image Generation")
# ... (Part 3 UI 和示例未变)
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps")
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale")
with gr.Row():
scheduler_radio_t2i = gr.Radio(choices=["cosine", "sigmoid", "linear"], value="cosine", label="Scheduler")
with gr.Row():
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3)
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil")
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False)
gr.Examples(
examples=[
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"],
["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"]
],
inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i],
outputs=[output_image_t2i, output_status_t2i],
fn=generate_viz_wrapper_t2i,
cache_examples=False
)
# --- 应用启动和事件处理 (已简化) ---
def initialize_app_state():
global VQ_MODEL
print("Loading VQ_MODEL for the first time...")
VQ_MODEL = MAGVITv2().from_pretrained("showlab/magvitv2")
print("VQ_MODEL loaded to CPU.")
status = load_model_and_tokenizer()
# MixCoT模型默认开启Thinking Mode
return status, True, gr.update(value="Thinking Mode ✅"), True, gr.update(value="Thinking Mode ✅")
demo.load(
fn=initialize_app_state,
inputs=None,
outputs=[
model_load_status_box,
thinking_mode_lm,
think_button_lm,
thinking_mode_mmu,
think_button_mmu
],
queue=True
)
# 清除按钮事件
clear_button_ui_lm.click(fn=lambda: (None, None), inputs=None, outputs=[output_visualization_box_lm, output_final_text_box_lm], queue=False)
clear_button_ui_mmu.click(fn=lambda: (None, None, None), inputs=None, outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu], queue=False)
clear_button_ui_t2i.click(fn=lambda: (None, ""), inputs=None, outputs=[output_image_t2i, output_status_t2i], queue=False)
# Thinking Mode 切换事件
think_button_lm.click(fn=toggle_thinking_mode, inputs=[thinking_mode_lm], outputs=[thinking_mode_lm, think_button_lm])
think_button_mmu.click(fn=toggle_thinking_mode, inputs=[thinking_mode_mmu], outputs=[thinking_mode_mmu, think_button_mmu])
# 生成按钮事件
run_button_ui_lm.click(fn=generate_viz_wrapper_lm, inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm, thinking_mode_lm], outputs=[output_visualization_box_lm, output_final_text_box_lm])
run_button_ui_mmu.click(fn=generate_viz_wrapper, inputs=[image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu, thinking_mode_mmu], outputs=[output_visualization_box_mmu, output_final_text_box_mmu])
run_button_ui_t2i.click(fn=generate_viz_wrapper_t2i, inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i], outputs=[output_image_t2i, output_status_t2i])
if __name__ == "__main__":
print(f"Starting Gradio App. Attempting to use device: {DEVICE}")
demo.launch(allowed_paths=["title.png", "figs"])