File size: 29,361 Bytes
ea359a8 dc4cdd8 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 0e83169 ca6c4d6 ea359a8 ca6c4d6 563513d ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 563513d ca6c4d6 563513d ca6c4d6 563513d ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 93f05a5 ea359a8 13a411c ea359a8 ca6c4d6 ea359a8 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ea359a8 93f05a5 ea359a8 ca6c4d6 ea359a8 5954d37 ea359a8 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ea359a8 ca6c4d6 ea359a8 93f05a5 ea359a8 061cd9c ca6c4d6 ea359a8 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ca6c4d6 5954d37 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 5a231a5 be97ad5 5a231a5 ca6c4d6 5a231a5 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 ca6c4d6 ea359a8 7b2c026 ea359a8 ca6c4d6 60e176e ca6c4d6 0e83169 ca6c4d6 ea359a8 60e176e ea359a8 60e176e ca6c4d6 0e83169 60e176e ea359a8 ca6c4d6 ea359a8 ca6c4d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
import torch
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer
from torchvision import transforms
from models import MAGVITv2, get_mask_schedule, MMadaModelLM
from training.prompting_utils import UniversalPrompting
from PIL import Image
import spaces
# --- 辅助函数 (未修改) ---
def image_transform(image, resolution=256, normalize=True):
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
image = transforms.CenterCrop((resolution, resolution))(image)
image = transforms.ToTensor()(image)
if normalize:
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
return image
def add_gumbel_noise(logits, temperature):
if abs(temperature) < 1e-9:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20)
return logits + temperature * standard_gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
mask_num = mask_index.sum(dim=1, keepdim=True)
steps = max(1, int(steps))
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base
for i in range(mask_num.size(0)):
if remainder[i] > 0 :
num_transfer_tokens[i, :remainder[i].item()] += 1
return num_transfer_tokens
# --- 全局变量和模型配置 ---
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# 固定使用 MMaDA-8B-MixCoT 模型
DEFAULT_MODEL_PATH = "Gen-Verse/MMaDA-8B-MixCoT"
MASK_ID = None
MODEL = None
TOKENIZER = None
uni_prompting = None
VQ_MODEL = None
# --- 核心模型加载函数 (已简化) ---
@spaces.GPU
def load_model_and_tokenizer():
"""
加载固定的 MMaDA-8B-MixCoT 模型和分词器。
"""
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting
# 如果模型已经加载,则直接返回
if MODEL is not None:
return f"Model 'MMaDA-8B-MixCoT' is already loaded. MASK_ID: {MASK_ID}"
status_msg_parts = [f"Loading 'MMaDA-8B-MixCoT'..."]
try:
TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True)
status_msg_parts.append(f"Tokenizer for 'MMaDA-8B-MixCoT' loaded.")
MODEL = MMadaModelLM.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16).eval()
status_msg_parts.append(f"Model 'MMaDA-8B-MixCoT' loaded to {DEVICE}.")
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True)
MASK_ID = 126336
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.")
if TOKENIZER.pad_token_id is None:
if TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
TOKENIZER.pad_token = TOKENIZER.eos_token
status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).")
TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}"
return " ".join(status_msg_parts)
except Exception as e:
MODEL, TOKENIZER, MASK_ID = None, None, None
return f"Error loading model 'MMaDA-8B-MixCoT': {str(e)}"
# --- 可视化和生成函数 (generate_viz_wrapper* 系列,已修复全局变量问题) ---
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask):
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0:
return [("Error in sequence data for visualization.", "ERROR")]
current_x_ids_batch = current_x_ids_batch[:, prompt_len:]
seq_ids = current_x_ids_batch[0].tolist()
intermediate_tuples = []
for j, token_id_int in enumerate(seq_ids):
try:
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False)
except Exception:
token_str = f"[ID:{token_id_int}]"
label = "ERROR"
if token_id_int == current_mask_id:
token_str = "[MASK]"
label = "MASK"
else:
label = "GEN"
intermediate_tuples.append((token_str, label, token_id_int))
return intermediate_tuples
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"):
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting, VQ_MODEL
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield Image.new("RGB", (512, 512), (255, 255, 255)), "Error: Model not loaded. Please load the model first."
return
if DEVICE == 'cuda':
MODEL.to(DEVICE)
VQ_MODEL.to(DEVICE)
try:
# ... (函数实现和之前一样)
steps = int(steps)
guidance_scale = float(guidance_scale)
image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID
prompt_text = [prompt_text]
input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen')
if guidance_scale > 0:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen')
else:
uncond_input_ids, uncond_attention_mask = None, None
mask_schedule = get_mask_schedule(mask_schedule)
blank_image = Image.new("RGB", (512, 512), (255, 255, 255))
yield blank_image, "Starting generation..."
for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise(
input_ids=input_ids, uncond_input_ids=uncond_input_ids, attention_mask=attention_mask,
uncond_attention_mask=uncond_attention_mask, temperature=1.0, timesteps=steps,
guidance_scale=guidance_scale, noise_schedule=mask_schedule, noise_type="mask",
seq_len=1024, vq_model=VQ_MODEL, uni_prompting=uni_prompting):
yield image_step, status_msg_step
finally:
if DEVICE == 'cuda':
MODEL.to('cpu')
VQ_MODEL.to('cpu')
torch.cuda.empty_cache()
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_lm=False):
global MODEL, TOKENIZER, MASK_ID, DEVICE
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
if DEVICE == 'cuda':
MODEL.to(DEVICE)
try:
# ... (函数实现和之前一样)
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length)
if thinking_mode_lm:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=4096)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = torch.ones_like(input_ids) # Dummy mask, adjust if needed
batch_size, prompt_len = input_ids.shape[0], input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation..."
# ... (rest of the logic is the same)
num_blocks = gen_length // block_length
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
confidence_for_selection = torch.where(mask_index_global & block_masks_bool_current, x0_probs, -torch.inf)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item())
if k_val > 0:
_, topk_indices_in_x = torch.topk(confidence_for_selection[j_batch_idx], k=k_val)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block}"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_text_output = TOKENIZER.batch_decode(x[:, prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0]
finally:
if DEVICE == 'cuda':
MODEL.to('cpu')
torch.cuda.empty_cache()
@torch.no_grad()
@spaces.GPU
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature,
cfg_scale, remasking_strategy, thinking_mode_mmu=False):
global MODEL, TOKENIZER, MASK_ID, DEVICE, VQ_MODEL
if MODEL is None or TOKENIZER is None or MASK_ID is None:
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
return
if DEVICE == 'cuda':
MODEL.to(DEVICE)
VQ_MODEL.to(DEVICE)
try:
# ... (函数实现和之前一样)
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length)
if thinking_mode_mmu:
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
m = [{"role": "user", "content": prompt_text}]
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
image_vq_ids_tensor = None
if uploaded_image_pil is not None:
image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE).unsqueeze(0)
image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=4096)['input_ids'].to(DEVICE)
raw_prompt_attention_mask = torch.ones_like(input_ids) # Dummy mask
if image_vq_ids_tensor is not None:
input_ids = torch.cat([(torch.ones(1, 1) * 126089).to(DEVICE), (torch.ones(1, 1) * 126084).to(DEVICE), image_vq_ids_tensor, (torch.ones(1, 1) * 126085).to(DEVICE), input_ids], dim=1).long()
batch_size, prompt_len = input_ids.shape[0], input_ids.shape[1]
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
x[:, :prompt_len] = input_ids.clone()
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation..."
# ... (rest of the logic is the same)
num_blocks = gen_length // block_length
steps_per_block = steps // num_blocks
for num_block_iter in range(num_blocks):
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
num_transfer_tokens_for_this_block = get_num_transfer_tokens(block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block)
for i_step_in_block in range(steps_per_block):
mask_index_global = (x == MASK_ID)
model_output = MODEL(x)
logits = model_output.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
probs = F.softmax(logits.to(torch.float64), dim=-1)
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
confidence_for_selection = torch.where(mask_index_global & block_masks_bool_current, x0_probs, -torch.inf)
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
for j_batch_idx in range(batch_size):
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), (mask_index_global & block_masks_bool_current)[j_batch_idx].sum().item())
if k_val > 0:
_, topk_indices_in_x = torch.topk(confidence_for_selection[j_batch_idx], k=k_val)
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block}"
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
final_text_output = TOKENIZER.batch_decode(x[:, prompt_len:], skip_special_tokens=True)
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0]
finally:
if DEVICE == 'cuda':
MODEL.to('cpu')
VQ_MODEL.to('cpu')
torch.cuda.empty_cache()
# --- UI定义 ---
css_styles = """
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;}
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;}
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;}
.highlighted-text span{padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6;}
footer{display:none !important}
#live-update-scrollable-box {max-height: 800px; overflow-y: auto !important; display: block;}
#think_btn {background-color: #f3f4f6 !important; border: 1px solid #d0d0d0 !important; color: #111827 !important; font-size: 16px !important; font-weight: bold !important;}
#think_btn:hover {background-color: #e0e0e0 !important; border: 1px solid #c0c0c0 !important; color: #222 !important;}
#think_btn:active {background-color: #2563eb !important; border: 1px solid #b0b0b0 !important; color: white !important;}
.model-badge {padding: 5px 10px; border-radius: 15px; font-weight: bold; margin: 0 5px; display: inline-block;}
.active-model {background-color: #E879F9; color: white;}
.soon-model {background-color: #E5E7EB; color: #6B7280; cursor: not-allowed;}
"""
def toggle_thinking_mode(current_thinking_mode):
new_state = not current_thinking_mode
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
return new_state, gr.update(value=new_label)
color_map_config = {"MASK": "lightgrey", "GEN": "#DCABFA"}
theme = gr.themes.Ocean(primary_hue="fuchsia")
with gr.Blocks(css=css_styles, theme=theme) as demo:
thinking_mode_lm = gr.State(True) # MixCoT模型默认开启
thinking_mode_mmu = gr.State(True) # MixCoT模型默认开启
# --- 标题和模型信息 (已修改) ---
gr.HTML("""
<div align="center" style="margin-bottom: 20px;">
<img src='/gradio_api/file=title.png' width="160">
<p style="font-size: 16px; max-width: 800px; margin: 5px auto;">
MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation.
</p>
<p style="font-size: 15px;">
📄 <a href="https://arxiv.org/abs/2405.15809" target="_blank">Paper</a> | 💻 <a href="https://github.com/Gen-Verse/MMaDA" target="_blank">Code</a>
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; height: 100%;">
<div>
<span class="model-badge active-model">MMaDA-8B-MixCoT</span>
<span class="model-badge soon-model">MMaDA-8B-Max (coming soon)</span>
</div>
</div>
""")
with gr.Column(scale=2):
model_load_status_box = gr.Textbox(
label="Model Load Status", interactive=False, lines=3, max_lines=5
)
# --- Part 1. 文本生成 ---
gr.Markdown("## Part 1. Text Generation")
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?")
think_button_lm = gr.Button("Thinking Mode ✅", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
# ... 参数滑块 (未修改)
with gr.Row():
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length")
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps")
with gr.Row():
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length")
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale")
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature")
with gr.Row():
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3)
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
output_visualization_box_lm = gr.HighlightedText(label="Live Generation Process", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box")
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
# 仅保留 MixCoT 的示例 (已修改)
gr.Examples(
examples=[
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"],
["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"]
],
inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm],
outputs=[output_visualization_box_lm, output_final_text_box_lm],
fn=generate_viz_wrapper_lm,
cache_examples=False
)
# --- Part 2 & 3 和事件处理器 (结构类似,已做简化) ---
gr.Markdown("---")
gr.Markdown("## Part 2. Multimodal Understanding")
with gr.Row():
# ... (Part 2 UI 结构未变)
with gr.Column(scale=2):
prompt_input_box_mmu = gr.Textbox(label="Enter your prompt:", lines=3, value="")
think_button_mmu = gr.Button("Thinking Mode ✅", elem_id="think_btn")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length")
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps")
with gr.Row():
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=64, step=32, label="Block Length")
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
with gr.Row():
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale")
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature")
with gr.Row():
image_upload_box = gr.Image(type="pil", label="Upload Image")
with gr.Row():
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3)
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
output_visualization_box_mmu = gr.HighlightedText(label="Token Sequence (Live Update)", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box")
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
# 仅保留 MixCoT 的 MMU 示例
gr.Examples(
examples=[
["figs/geo.png", "In the given figure, a square ABCD is inscribed in a circle with center O. Point P is located on side CD. What is the value of angle APB?", 256, 512, 64, 1, 0, "low_confidence"],
["figs/bus.jpg", "What are the colors of the bus?", 256, 512, 64, 1, 0, "low_confidence"]
],
inputs=[image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu],
outputs=[output_visualization_box_mmu, output_final_text_box_mmu],
fn=generate_viz_wrapper,
cache_examples=False
)
gr.Markdown("---")
gr.Markdown("## Part 3. Text-to-Image Generation")
# ... (Part 3 UI 和示例未变)
with gr.Row():
with gr.Column(scale=2):
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps")
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale")
with gr.Row():
scheduler_radio_t2i = gr.Radio(choices=["cosine", "sigmoid", "linear"], value="cosine", label="Scheduler")
with gr.Row():
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3)
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1)
with gr.Column(scale=3):
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil")
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False)
gr.Examples(
examples=[
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"],
["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"]
],
inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i],
outputs=[output_image_t2i, output_status_t2i],
fn=generate_viz_wrapper_t2i,
cache_examples=False
)
# --- 应用启动和事件处理 (已简化) ---
def initialize_app_state():
global VQ_MODEL
print("Loading VQ_MODEL for the first time...")
VQ_MODEL = MAGVITv2().from_pretrained("showlab/magvitv2")
print("VQ_MODEL loaded to CPU.")
status = load_model_and_tokenizer()
# MixCoT模型默认开启Thinking Mode
return status, True, gr.update(value="Thinking Mode ✅"), True, gr.update(value="Thinking Mode ✅")
demo.load(
fn=initialize_app_state,
inputs=None,
outputs=[
model_load_status_box,
thinking_mode_lm,
think_button_lm,
thinking_mode_mmu,
think_button_mmu
],
queue=True
)
# 清除按钮事件
clear_button_ui_lm.click(fn=lambda: (None, None), inputs=None, outputs=[output_visualization_box_lm, output_final_text_box_lm], queue=False)
clear_button_ui_mmu.click(fn=lambda: (None, None, None), inputs=None, outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu], queue=False)
clear_button_ui_t2i.click(fn=lambda: (None, ""), inputs=None, outputs=[output_image_t2i, output_status_t2i], queue=False)
# Thinking Mode 切换事件
think_button_lm.click(fn=toggle_thinking_mode, inputs=[thinking_mode_lm], outputs=[thinking_mode_lm, think_button_lm])
think_button_mmu.click(fn=toggle_thinking_mode, inputs=[thinking_mode_mmu], outputs=[thinking_mode_mmu, think_button_mmu])
# 生成按钮事件
run_button_ui_lm.click(fn=generate_viz_wrapper_lm, inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm, thinking_mode_lm], outputs=[output_visualization_box_lm, output_final_text_box_lm])
run_button_ui_mmu.click(fn=generate_viz_wrapper, inputs=[image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu, thinking_mode_mmu], outputs=[output_visualization_box_mmu, output_final_text_box_mmu])
run_button_ui_t2i.click(fn=generate_viz_wrapper_t2i, inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i], outputs=[output_image_t2i, output_status_t2i])
if __name__ == "__main__":
print(f"Starting Gradio App. Attempting to use device: {DEVICE}")
demo.launch(allowed_paths=["title.png", "figs"]) |