Update app.py
Browse files
app.py
CHANGED
|
@@ -6,14 +6,12 @@ import io
|
|
| 6 |
import base64
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
-
import spaces
|
| 10 |
import torch
|
| 11 |
-
# --- Optional: Add this if trying Solution 2 (suppress_errors) later ---
|
| 12 |
-
# import torch._dynamo
|
| 13 |
from diffusers import FluxControlNetModel
|
| 14 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 15 |
-
from gradio_imageslider import ImageSlider
|
| 16 |
-
from PIL import Image, ImageOps
|
| 17 |
from huggingface_hub import snapshot_download
|
| 18 |
|
| 19 |
# --- Setup Logging and Device ---
|
|
@@ -21,25 +19,34 @@ logging.basicConfig(level=logging.INFO)
|
|
| 21 |
warnings.filterwarnings("ignore")
|
| 22 |
|
| 23 |
css = """
|
| 24 |
-
#col-container {
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
"""
|
| 27 |
|
| 28 |
if torch.cuda.is_available():
|
| 29 |
power_device = "GPU"
|
| 30 |
device = "cuda"
|
| 31 |
-
torch_dtype = torch.bfloat16
|
| 32 |
else:
|
| 33 |
power_device = "CPU"
|
| 34 |
device = "cpu"
|
| 35 |
-
torch_dtype = torch.float32
|
|
|
|
| 36 |
logging.info(f"Selected device: {device} | Data type: {torch_dtype}")
|
| 37 |
|
| 38 |
# --- Authentication and Model Download ---
|
| 39 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
| 40 |
flux_model_id = "black-forest-labs/FLUX.1-dev"
|
| 41 |
controlnet_model_id = "jasperai/Flux.1-dev-Controlnet-Upscaler"
|
| 42 |
-
local_model_dir = flux_model_id.split('/')[-1]
|
| 43 |
pipe = None
|
| 44 |
|
| 45 |
try:
|
|
@@ -49,7 +56,7 @@ try:
|
|
| 49 |
repo_type="model",
|
| 50 |
ignore_patterns=["*.md", "*.gitattributes"],
|
| 51 |
local_dir=local_model_dir,
|
| 52 |
-
token=huggingface_token
|
| 53 |
)
|
| 54 |
logging.info(f"Base model downloaded/verified in: {model_path}")
|
| 55 |
|
|
@@ -68,88 +75,60 @@ try:
|
|
| 68 |
pipe.to(device)
|
| 69 |
logging.info("Pipeline loaded and moved to device.")
|
| 70 |
|
| 71 |
-
# --- OPTIMIZATION: Attempt torch.compile (PyTorch 2.0+) ---
|
| 72 |
-
if device == "cuda" and hasattr(torch, "compile"):
|
| 73 |
-
# --- Using "default" mode as first attempt to fix compile errors ---
|
| 74 |
-
compile_mode = "default"
|
| 75 |
-
# --- Alternative (Solution 2): Uncomment these lines if "default" fails ---
|
| 76 |
-
# import torch._dynamo
|
| 77 |
-
# torch._dynamo.config.suppress_errors = True
|
| 78 |
-
# compile_mode = "max-autotune" # or "default" even with suppress_errors
|
| 79 |
-
# --- End Alternative ---
|
| 80 |
-
|
| 81 |
-
logging.info(f"Attempting to compile the pipeline transformer with torch.compile (mode='{compile_mode}')...")
|
| 82 |
-
try:
|
| 83 |
-
pipe.transformer = torch.compile(pipe.transformer, mode=compile_mode, fullgraph=True)
|
| 84 |
-
logging.info("Pipeline transformer compiled successfully.")
|
| 85 |
-
# Optional dummy inference run can go here for pre-compilation
|
| 86 |
-
except Exception as e:
|
| 87 |
-
logging.warning(f"torch.compile failed (mode='{compile_mode}'): {e}. Running unoptimized.")
|
| 88 |
-
# --- Fallback (Solution 3): If compilation fails consistently, comment out the compile line above ---
|
| 89 |
-
# pipe.transformer = torch.compile(pipe.transformer, mode=compile_mode, fullgraph=True) # <-- Comment this out
|
| 90 |
-
else:
|
| 91 |
-
logging.info("torch.compile not available or not on CUDA, skipping compilation.")
|
| 92 |
-
|
| 93 |
-
# --- (Optional xformers code could be added here if used) ---
|
| 94 |
-
|
| 95 |
-
logging.info("Pipeline ready for inference.")
|
| 96 |
-
|
| 97 |
except Exception as e:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
raise SystemExit(f"Model loading/setup failed: {e}")
|
| 104 |
|
| 105 |
# --- Constants ---
|
| 106 |
MAX_SEED = 2**32 - 1
|
| 107 |
-
MAX_PIXEL_BUDGET = 1280 * 1280
|
| 108 |
-
|
|
|
|
| 109 |
|
| 110 |
-
# --- Image Processing Function (
|
| 111 |
def process_input(input_image):
|
| 112 |
-
"""Processes input image
|
|
|
|
| 113 |
if input_image is None:
|
| 114 |
raise gr.Error("Input image is missing!")
|
| 115 |
try:
|
| 116 |
-
# Ensure it's a PIL Image and handle EXIF orientation
|
| 117 |
input_image = ImageOps.exif_transpose(input_image)
|
| 118 |
-
# Convert to RGB if needed
|
| 119 |
if input_image.mode != 'RGB':
|
| 120 |
logging.info(f"Converting input image from {input_image.mode} to RGB")
|
| 121 |
input_image = input_image.convert('RGB')
|
| 122 |
w, h = input_image.size
|
| 123 |
except AttributeError:
|
| 124 |
-
# Catch cases where input_image might not be a valid PIL Image object
|
| 125 |
raise gr.Error("Invalid input image format. Please provide a valid image file.")
|
| 126 |
except Exception as img_err:
|
| 127 |
-
# Catch other potential PIL errors
|
| 128 |
raise gr.Error(f"Could not process input image: {img_err}")
|
| 129 |
|
| 130 |
w_original, h_original = w, h
|
| 131 |
if w == 0 or h == 0:
|
| 132 |
raise gr.Error("Input image has zero width or height.")
|
| 133 |
|
| 134 |
-
# Calculate target
|
| 135 |
target_w_internal = w * INTERNAL_PROCESSING_FACTOR
|
| 136 |
target_h_internal = h * INTERNAL_PROCESSING_FACTOR
|
| 137 |
target_pixels_internal = target_w_internal * target_h_internal
|
| 138 |
|
| 139 |
was_resized = False
|
| 140 |
-
input_image_to_process = input_image.copy()
|
| 141 |
|
| 142 |
# Check if the *intermediate* size exceeds the budget
|
| 143 |
if target_pixels_internal > MAX_PIXEL_BUDGET:
|
| 144 |
-
# Calculate the maximum allowed input pixels for the given internal factor
|
| 145 |
max_input_pixels = MAX_PIXEL_BUDGET / (INTERNAL_PROCESSING_FACTOR**2)
|
| 146 |
current_input_pixels = w * h
|
| 147 |
|
| 148 |
if current_input_pixels > max_input_pixels:
|
| 149 |
-
# Calculate scaling factor to fit budget and resize input
|
| 150 |
input_scale_factor = (max_input_pixels / current_input_pixels) ** 0.5
|
| 151 |
-
input_w_resized =
|
| 152 |
-
input_h_resized =
|
|
|
|
|
|
|
|
|
|
| 153 |
intermediate_w = input_w_resized * INTERNAL_PROCESSING_FACTOR
|
| 154 |
intermediate_h = input_h_resized * INTERNAL_PROCESSING_FACTOR
|
| 155 |
|
|
@@ -162,12 +141,12 @@ def process_input(input_image):
|
|
| 162 |
f"-> model generates ~{int(intermediate_w)}x{int(intermediate_h)}."
|
| 163 |
)
|
| 164 |
input_image_to_process = input_image_to_process.resize((input_w_resized, input_h_resized), Image.Resampling.LANCZOS)
|
| 165 |
-
was_resized = True # Flag that original dimensions
|
| 166 |
|
| 167 |
-
# Round processed input dimensions
|
| 168 |
w_proc, h_proc = input_image_to_process.size
|
| 169 |
-
w_final_proc = max(8, w_proc - w_proc % 8)
|
| 170 |
-
h_final_proc = max(8, h_proc - h_proc % 8)
|
| 171 |
|
| 172 |
if (w_proc, h_proc) != (w_final_proc, h_final_proc):
|
| 173 |
logging.info(f"Rounding processed input dimensions from {w_proc}x{h_proc} to {w_final_proc}x{h_final_proc}")
|
|
@@ -175,147 +154,120 @@ def process_input(input_image):
|
|
| 175 |
|
| 176 |
return input_image_to_process, w_original, h_original, was_resized
|
| 177 |
|
| 178 |
-
|
| 179 |
-
# --- Inference Function (infer) ---
|
| 180 |
-
# --- MODIFIED GPU DURATION ---
|
| 181 |
@spaces.GPU(duration=75)
|
| 182 |
def infer(
|
| 183 |
seed,
|
| 184 |
randomize_seed,
|
| 185 |
input_image,
|
| 186 |
num_inference_steps,
|
| 187 |
-
final_upscale_factor,
|
| 188 |
controlnet_conditioning_scale,
|
| 189 |
-
progress=gr.Progress(track_tqdm=True),
|
| 190 |
):
|
| 191 |
-
"""Runs the Flux ControlNet upscaling pipeline."""
|
| 192 |
global pipe
|
| 193 |
-
# --- Define default return structure for error cases ---
|
| 194 |
-
# [[Input Image or None, Output Image or None], Seed Int, Base64 String or None]
|
| 195 |
-
current_seed = int(seed) if seed is not None else 0
|
| 196 |
-
default_return = [[input_image, None], current_seed, None]
|
| 197 |
-
|
| 198 |
if pipe is None:
|
| 199 |
gr.Error("Pipeline not loaded. Cannot perform inference.")
|
| 200 |
-
return
|
| 201 |
|
| 202 |
-
original_input_pil = input_image # Keep
|
| 203 |
|
| 204 |
-
# Handle missing input image
|
| 205 |
if input_image is None:
|
| 206 |
gr.Warning("Please provide an input image.")
|
| 207 |
-
|
| 208 |
-
if randomize_seed: current_seed = random.randint(0, MAX_SEED)
|
| 209 |
-
default_return[1] = current_seed
|
| 210 |
-
default_return[0][0] = None # Explicitly set original image part to None
|
| 211 |
-
return default_return
|
| 212 |
|
| 213 |
-
# Determine seed
|
| 214 |
if randomize_seed:
|
| 215 |
-
|
| 216 |
-
seed = int(
|
| 217 |
-
# Update default return with final seed and original image
|
| 218 |
-
default_return[1] = seed
|
| 219 |
-
default_return[0][0] = original_input_pil
|
| 220 |
|
| 221 |
-
# Ensure
|
| 222 |
final_upscale_factor = int(final_upscale_factor)
|
| 223 |
-
num_inference_steps = int(num_inference_steps)
|
| 224 |
-
|
| 225 |
-
# Clamp final factor if needed
|
| 226 |
if final_upscale_factor > INTERNAL_PROCESSING_FACTOR:
|
| 227 |
-
gr.Warning(f"
|
| 228 |
-
|
|
|
|
| 229 |
|
| 230 |
logging.info(
|
| 231 |
-
f"Starting inference:
|
| 232 |
-
f"
|
| 233 |
-
f"
|
|
|
|
| 234 |
)
|
| 235 |
|
| 236 |
-
# Process the input image
|
| 237 |
try:
|
|
|
|
| 238 |
processed_input_image, w_original, h_original, was_input_resized = process_input(
|
| 239 |
input_image
|
| 240 |
)
|
| 241 |
except Exception as e:
|
| 242 |
logging.error(f"Error processing input image: {e}", exc_info=True)
|
| 243 |
gr.Error(f"Error processing input image: {e}")
|
| 244 |
-
return
|
| 245 |
|
| 246 |
-
# Calculate intermediate dimensions for the model
|
| 247 |
w_proc, h_proc = processed_input_image.size
|
|
|
|
|
|
|
| 248 |
control_image_w = w_proc * INTERNAL_PROCESSING_FACTOR
|
| 249 |
control_image_h = h_proc * INTERNAL_PROCESSING_FACTOR
|
| 250 |
|
| 251 |
-
#
|
| 252 |
-
|
|
|
|
| 253 |
scale_factor = (MAX_PIXEL_BUDGET / (control_image_w * control_image_h)) ** 0.5
|
| 254 |
control_image_w = max(8, int(control_image_w * scale_factor))
|
| 255 |
control_image_h = max(8, int(control_image_h * scale_factor))
|
| 256 |
-
# Ensure multiple of 8 after scaling
|
| 257 |
control_image_w = max(8, control_image_w - control_image_w % 8)
|
| 258 |
control_image_h = max(8, control_image_h - control_image_h % 8)
|
| 259 |
-
logging.warning(f"Control image dimensions clamped
|
| 260 |
gr.Warning(f"Control image dimensions further clamped to {control_image_w}x{control_image_h}.")
|
| 261 |
|
| 262 |
-
|
| 263 |
-
logging.info(f"Resizing processed input {w_proc}x{h_proc} to control image {control_image_w}x{control_image_h}")
|
| 264 |
try:
|
|
|
|
| 265 |
control_image = processed_input_image.resize((control_image_w, control_image_h), Image.Resampling.LANCZOS)
|
| 266 |
except ValueError as resize_err:
|
| 267 |
logging.error(f"Error resizing processed input to control image: {resize_err}")
|
| 268 |
gr.Error(f"Failed to prepare control image: {resize_err}")
|
| 269 |
-
return
|
| 270 |
|
| 271 |
-
# Setup generator for reproducibility
|
| 272 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 273 |
|
| 274 |
-
# --- Run the
|
| 275 |
-
gr.Info(f"Generating intermediate image at {INTERNAL_PROCESSING_FACTOR}x quality ({control_image_w}x{control_image_h})
|
| 276 |
-
logging.info(f"Running pipeline:
|
| 277 |
-
intermediate_result_image = None
|
| 278 |
try:
|
| 279 |
with torch.inference_mode():
|
| 280 |
-
# The actual model inference call
|
| 281 |
intermediate_result_image = pipe(
|
| 282 |
-
prompt="",
|
| 283 |
-
control_image=control_image,
|
| 284 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 285 |
-
num_inference_steps=num_inference_steps,
|
| 286 |
-
guidance_scale=0.0,
|
| 287 |
height=control_image_h, # Target height for the model
|
| 288 |
width=control_image_w, # Target width for the model
|
| 289 |
generator=generator,
|
| 290 |
-
# Can add callback for step progress if needed:
|
| 291 |
-
# callback_on_step_end=lambda step, t, latents: progress(step / num_inference_steps)
|
| 292 |
).images[0]
|
| 293 |
logging.info(f"Pipeline execution finished. Intermediate image size: {intermediate_result_image.size if intermediate_result_image else 'None'}")
|
| 294 |
|
| 295 |
except torch.cuda.OutOfMemoryError as oom_error:
|
| 296 |
-
# Handle specific OOM error
|
| 297 |
logging.error(f"CUDA Out of Memory during pipeline execution: {oom_error}", exc_info=True)
|
| 298 |
-
gr.Error(f"Ran out of GPU memory trying to generate intermediate {control_image_w}x{control_image_h}.
|
| 299 |
-
if device == 'cuda': torch.cuda.empty_cache()
|
| 300 |
-
return
|
| 301 |
except Exception as e:
|
| 302 |
-
# Handle other pipeline errors, including potential torch.compile issues
|
| 303 |
logging.error(f"Error during pipeline execution: {e}", exc_info=True)
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
else:
|
| 308 |
-
gr.Error(f"Inference failed: {e}")
|
| 309 |
-
return default_return
|
| 310 |
-
|
| 311 |
-
# --- Post-Pipeline Checks and Resizing ---
|
| 312 |
if not intermediate_result_image:
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
return default_return
|
| 317 |
|
|
|
|
| 318 |
# Calculate final target dimensions based on ORIGINAL input size and FINAL upscale factor
|
|
|
|
| 319 |
if was_input_resized:
|
| 320 |
# Base final size on the downscaled input that was processed
|
| 321 |
final_target_w = w_proc * final_upscale_factor
|
|
@@ -327,54 +279,48 @@ def infer(
|
|
| 327 |
final_target_w = w_original * final_upscale_factor
|
| 328 |
final_target_h = h_original * final_upscale_factor
|
| 329 |
|
| 330 |
-
# Perform final resize from intermediate to target size
|
| 331 |
final_result_image = intermediate_result_image
|
| 332 |
current_w, current_h = intermediate_result_image.size
|
| 333 |
|
|
|
|
| 334 |
if (current_w, current_h) != (final_target_w, final_target_h):
|
| 335 |
logging.info(f"Resizing intermediate image from {current_w}x{current_h} to final target size {final_target_w}x{final_target_h} (using {final_upscale_factor}x factor)")
|
| 336 |
gr.Info(f"Resizing from intermediate {current_w}x{current_h} to final {final_target_w}x{final_target_h}...")
|
|
|
|
| 337 |
try:
|
| 338 |
-
# Ensure target dimensions are valid before resizing
|
| 339 |
if final_target_w > 0 and final_target_h > 0:
|
| 340 |
-
# Use
|
| 341 |
final_result_image = intermediate_result_image.resize((final_target_w, final_target_h), Image.Resampling.LANCZOS)
|
| 342 |
else:
|
| 343 |
-
# Avoid resizing if target dimensions are invalid
|
| 344 |
gr.Warning(f"Invalid final target dimensions ({final_target_w}x{final_target_h}). Skipping final resize.")
|
| 345 |
final_result_image = intermediate_result_image # Keep intermediate
|
| 346 |
except Exception as resize_e:
|
| 347 |
-
# Handle potential errors during final resize
|
| 348 |
logging.error(f"Could not resize intermediate image to final size: {resize_e}")
|
| 349 |
gr.Warning(f"Failed to resize to final {final_upscale_factor}x. Returning intermediate {INTERNAL_PROCESSING_FACTOR}x result ({current_w}x{current_h}).")
|
| 350 |
final_result_image = intermediate_result_image # Fallback to intermediate
|
| 351 |
else:
|
| 352 |
-
# No resize needed if intermediate matches final target
|
| 353 |
logging.info(f"Intermediate size {current_w}x{current_h} matches final target size. No final resize needed.")
|
| 354 |
|
|
|
|
| 355 |
logging.info(f"Inference successful. Final output size: {final_result_image.size}")
|
| 356 |
|
| 357 |
-
# --- Base64 Encoding
|
| 358 |
base64_string = None
|
| 359 |
if final_result_image:
|
| 360 |
try:
|
| 361 |
buffered = io.BytesIO()
|
| 362 |
-
# Save as WEBP for potentially smaller size, adjust quality as needed
|
| 363 |
final_result_image.save(buffered, format="WEBP", quality=90)
|
| 364 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 365 |
-
# Format as a data URL
|
| 366 |
base64_string = f"data:image/webp;base64,{img_str}"
|
| 367 |
logging.info(f"Encoded result image to Base64 string (length: {len(base64_string)} chars).")
|
| 368 |
except Exception as enc_err:
|
| 369 |
-
# Log if encoding fails but don't stop the process
|
| 370 |
logging.error(f"Failed to encode result image to Base64: {enc_err}", exc_info=True)
|
| 371 |
-
base64_string = None # Ensure it's None if encoding failed
|
| 372 |
|
| 373 |
-
#
|
| 374 |
return [[original_input_pil, final_result_image], seed, base64_string]
|
| 375 |
|
| 376 |
|
| 377 |
-
# --- Gradio Interface
|
| 378 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as demo:
|
| 379 |
gr.Markdown(
|
| 380 |
f"""
|
|
@@ -382,15 +328,11 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as d
|
|
| 382 |
Upscale images using the [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) model based on [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
|
| 383 |
Currently running on **{power_device}**. Hardware provided by Hugging Face 🤗.
|
| 384 |
|
| 385 |
-
**How it works:** This demo uses an internal processing scale of **{INTERNAL_PROCESSING_FACTOR}x** for potentially higher detail generation
|
| 386 |
-
then resizes the result to your selected **Final Upscale Factor**.
|
| 387 |
|
| 388 |
-
**
|
| 389 |
-
|
| 390 |
-
2. **(Code Change Needed):** Reduce `INTERNAL_PROCESSING_FACTOR` in the script (e.g., to 3) for direct computation reduction (may lower detail).
|
| 391 |
-
3. `torch.compile` is attempted (`mode="default"`) which might provide speedup after the first run (check logs for success/failure).
|
| 392 |
-
|
| 393 |
-
*Limit*: Intermediate processing resolution capped around **{MAX_PIXEL_BUDGET/1_000_000:.1f} megapixels** ({int(MAX_PIXEL_BUDGET**0.5)}x{int(MAX_PIXEL_BUDGET**0.5)}).
|
| 394 |
"""
|
| 395 |
)
|
| 396 |
|
|
@@ -403,24 +345,10 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as d
|
|
| 403 |
sources=["upload", "clipboard"],
|
| 404 |
)
|
| 405 |
with gr.Column(scale=1):
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
maximum=INTERNAL_PROCESSING_FACTOR, # Max limited by internal factor
|
| 411 |
-
step=1,
|
| 412 |
-
value=min(2, INTERNAL_PROCESSING_FACTOR) # Default to 2x or internal factor if smaller
|
| 413 |
-
)
|
| 414 |
-
num_inference_steps = gr.Slider(
|
| 415 |
-
label="Inference Steps",
|
| 416 |
-
info="Fewer steps = faster. Try 10-15.",
|
| 417 |
-
minimum=4, maximum=50, step=1, value=15 # Defaulting to 15 for speed
|
| 418 |
-
)
|
| 419 |
-
controlnet_conditioning_scale = gr.Slider(
|
| 420 |
-
label="ControlNet Conditioning Scale",
|
| 421 |
-
info="Strength of ControlNet guidance.",
|
| 422 |
-
minimum=0.0, maximum=1.5, step=0.05, value=0.6
|
| 423 |
-
)
|
| 424 |
with gr.Row():
|
| 425 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
| 426 |
randomize_seed = gr.Checkbox(label="Random", value=True, scale=0, min_width=80)
|
|
@@ -430,30 +358,29 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as d
|
|
| 430 |
result_slider = ImageSlider(
|
| 431 |
label="Input / Output Comparison",
|
| 432 |
type="pil",
|
| 433 |
-
interactive=False,
|
| 434 |
show_label=True,
|
| 435 |
-
position=0.5
|
| 436 |
)
|
| 437 |
|
| 438 |
output_seed = gr.Textbox(label="Seed Used", interactive=False, visible=True, scale=1)
|
| 439 |
-
# Hidden output for API usage
|
| 440 |
api_base64_output = gr.Textbox(label="API Base64 Output", interactive=False, visible=False)
|
| 441 |
|
| 442 |
-
# --- Examples ---
|
| 443 |
example_dir = "examples"
|
| 444 |
example_files = ["image_2.jpg", "image_4.jpg", "low_res_face.png", "low_res_landscape.png"]
|
| 445 |
example_paths = [os.path.join(example_dir, f) for f in example_files if os.path.exists(os.path.join(example_dir, f))]
|
| 446 |
|
| 447 |
if example_paths:
|
| 448 |
gr.Examples(
|
| 449 |
-
# Examples use the new
|
| 450 |
-
examples=[ [path,
|
|
|
|
| 451 |
inputs=[ input_im, upscale_factor_slider, num_inference_steps, controlnet_conditioning_scale, seed, randomize_seed, ],
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
label=f"Example Images (Click to Run with {min(2, INTERNAL_PROCESSING_FACTOR)}x Output, 15 Steps)",
|
| 457 |
run_on_click=True
|
| 458 |
)
|
| 459 |
else:
|
|
@@ -462,7 +389,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as d
|
|
| 462 |
gr.Markdown("---")
|
| 463 |
gr.Markdown("**Disclaimer:** Demo for illustrative purposes. Users are responsible for generated content.")
|
| 464 |
|
| 465 |
-
# Connect button click
|
| 466 |
run_button.click(
|
| 467 |
fn=infer,
|
| 468 |
inputs=[
|
|
@@ -470,15 +397,12 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as d
|
|
| 470 |
randomize_seed,
|
| 471 |
input_im,
|
| 472 |
num_inference_steps,
|
| 473 |
-
upscale_factor_slider,
|
| 474 |
controlnet_conditioning_scale,
|
| 475 |
],
|
| 476 |
-
# Map all return values from infer to the correct output components
|
| 477 |
outputs=[result_slider, output_seed, api_base64_output],
|
| 478 |
-
api_name="upscale"
|
| 479 |
)
|
| 480 |
|
| 481 |
# Launch the Gradio app
|
| 482 |
-
# queue manages concurrent users/requests
|
| 483 |
-
# share=False means no public link generated by default
|
| 484 |
demo.queue(max_size=10).launch(share=False, show_api=True)
|
|
|
|
| 6 |
import base64
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
+
import spaces
|
| 10 |
import torch
|
|
|
|
|
|
|
| 11 |
from diffusers import FluxControlNetModel
|
| 12 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 13 |
+
from gradio_imageslider import ImageSlider # Ensure this is installed: pip install gradio_imageslider
|
| 14 |
+
from PIL import Image, ImageOps # Import ImageOps for exif transpose
|
| 15 |
from huggingface_hub import snapshot_download
|
| 16 |
|
| 17 |
# --- Setup Logging and Device ---
|
|
|
|
| 19 |
warnings.filterwarnings("ignore")
|
| 20 |
|
| 21 |
css = """
|
| 22 |
+
#col-container {
|
| 23 |
+
margin: 0 auto;
|
| 24 |
+
max-width: 512px; /* Increased max-width slightly for better layout */
|
| 25 |
+
}
|
| 26 |
+
.gradio-container {
|
| 27 |
+
max-width: 900px !important; /* Control overall container width */
|
| 28 |
+
margin: auto !important;
|
| 29 |
+
}
|
| 30 |
"""
|
| 31 |
|
| 32 |
if torch.cuda.is_available():
|
| 33 |
power_device = "GPU"
|
| 34 |
device = "cuda"
|
| 35 |
+
torch_dtype = torch.bfloat16 # Use bfloat16 for GPU for better performance/memory
|
| 36 |
else:
|
| 37 |
power_device = "CPU"
|
| 38 |
device = "cpu"
|
| 39 |
+
torch_dtype = torch.float32 # Use float32 for CPU
|
| 40 |
+
|
| 41 |
logging.info(f"Selected device: {device} | Data type: {torch_dtype}")
|
| 42 |
|
| 43 |
# --- Authentication and Model Download ---
|
| 44 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 45 |
+
|
| 46 |
+
# Define model IDs
|
| 47 |
flux_model_id = "black-forest-labs/FLUX.1-dev"
|
| 48 |
controlnet_model_id = "jasperai/Flux.1-dev-Controlnet-Upscaler"
|
| 49 |
+
local_model_dir = flux_model_id.split('/')[-1] # e.g., "FLUX.1-dev"
|
| 50 |
pipe = None
|
| 51 |
|
| 52 |
try:
|
|
|
|
| 56 |
repo_type="model",
|
| 57 |
ignore_patterns=["*.md", "*.gitattributes"],
|
| 58 |
local_dir=local_model_dir,
|
| 59 |
+
token=huggingface_token,
|
| 60 |
)
|
| 61 |
logging.info(f"Base model downloaded/verified in: {model_path}")
|
| 62 |
|
|
|
|
| 75 |
pipe.to(device)
|
| 76 |
logging.info("Pipeline loaded and moved to device.")
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
except Exception as e:
|
| 79 |
+
logging.error(f"FATAL: Error during model loading: {e}", exc_info=True)
|
| 80 |
+
# --- Simplified Error Handling for Brevity ---
|
| 81 |
+
print(f"FATAL ERROR DURING MODEL LOAD: {e}")
|
| 82 |
+
raise SystemExit(f"Model loading failed: {e}")
|
| 83 |
+
|
|
|
|
| 84 |
|
| 85 |
# --- Constants ---
|
| 86 |
MAX_SEED = 2**32 - 1
|
| 87 |
+
MAX_PIXEL_BUDGET = 1280 * 1280
|
| 88 |
+
# --- NEW: Define the internal factor for quality ---
|
| 89 |
+
INTERNAL_PROCESSING_FACTOR = 4
|
| 90 |
|
| 91 |
+
# --- Image Processing Function (Modified) ---
|
| 92 |
def process_input(input_image):
|
| 93 |
+
"""Processes the input image for the pipeline.
|
| 94 |
+
The pixel budget check uses the fixed INTERNAL_PROCESSING_FACTOR."""
|
| 95 |
if input_image is None:
|
| 96 |
raise gr.Error("Input image is missing!")
|
| 97 |
try:
|
|
|
|
| 98 |
input_image = ImageOps.exif_transpose(input_image)
|
|
|
|
| 99 |
if input_image.mode != 'RGB':
|
| 100 |
logging.info(f"Converting input image from {input_image.mode} to RGB")
|
| 101 |
input_image = input_image.convert('RGB')
|
| 102 |
w, h = input_image.size
|
| 103 |
except AttributeError:
|
|
|
|
| 104 |
raise gr.Error("Invalid input image format. Please provide a valid image file.")
|
| 105 |
except Exception as img_err:
|
|
|
|
| 106 |
raise gr.Error(f"Could not process input image: {img_err}")
|
| 107 |
|
| 108 |
w_original, h_original = w, h
|
| 109 |
if w == 0 or h == 0:
|
| 110 |
raise gr.Error("Input image has zero width or height.")
|
| 111 |
|
| 112 |
+
# Calculate target based on INTERNAL factor for budget check
|
| 113 |
target_w_internal = w * INTERNAL_PROCESSING_FACTOR
|
| 114 |
target_h_internal = h * INTERNAL_PROCESSING_FACTOR
|
| 115 |
target_pixels_internal = target_w_internal * target_h_internal
|
| 116 |
|
| 117 |
was_resized = False
|
| 118 |
+
input_image_to_process = input_image.copy()
|
| 119 |
|
| 120 |
# Check if the *intermediate* size exceeds the budget
|
| 121 |
if target_pixels_internal > MAX_PIXEL_BUDGET:
|
|
|
|
| 122 |
max_input_pixels = MAX_PIXEL_BUDGET / (INTERNAL_PROCESSING_FACTOR**2)
|
| 123 |
current_input_pixels = w * h
|
| 124 |
|
| 125 |
if current_input_pixels > max_input_pixels:
|
|
|
|
| 126 |
input_scale_factor = (max_input_pixels / current_input_pixels) ** 0.5
|
| 127 |
+
input_w_resized = int(w * input_scale_factor)
|
| 128 |
+
input_h_resized = int(h * input_scale_factor)
|
| 129 |
+
# Ensure minimum size of 8x8
|
| 130 |
+
input_w_resized = max(8, input_w_resized)
|
| 131 |
+
input_h_resized = max(8, input_h_resized)
|
| 132 |
intermediate_w = input_w_resized * INTERNAL_PROCESSING_FACTOR
|
| 133 |
intermediate_h = input_h_resized * INTERNAL_PROCESSING_FACTOR
|
| 134 |
|
|
|
|
| 141 |
f"-> model generates ~{int(intermediate_w)}x{int(intermediate_h)}."
|
| 142 |
)
|
| 143 |
input_image_to_process = input_image_to_process.resize((input_w_resized, input_h_resized), Image.Resampling.LANCZOS)
|
| 144 |
+
was_resized = True # Flag that original dimensions are lost for precise final scaling
|
| 145 |
|
| 146 |
+
# Round processed input dimensions to be multiple of 8
|
| 147 |
w_proc, h_proc = input_image_to_process.size
|
| 148 |
+
w_final_proc = max(8, w_proc - w_proc % 8)
|
| 149 |
+
h_final_proc = max(8, h_proc - h_proc % 8)
|
| 150 |
|
| 151 |
if (w_proc, h_proc) != (w_final_proc, h_final_proc):
|
| 152 |
logging.info(f"Rounding processed input dimensions from {w_proc}x{h_proc} to {w_final_proc}x{h_final_proc}")
|
|
|
|
| 154 |
|
| 155 |
return input_image_to_process, w_original, h_original, was_resized
|
| 156 |
|
| 157 |
+
# --- Inference Function (Modified) ---
|
|
|
|
|
|
|
| 158 |
@spaces.GPU(duration=75)
|
| 159 |
def infer(
|
| 160 |
seed,
|
| 161 |
randomize_seed,
|
| 162 |
input_image,
|
| 163 |
num_inference_steps,
|
| 164 |
+
final_upscale_factor, # Renamed for clarity internally
|
| 165 |
controlnet_conditioning_scale,
|
| 166 |
+
progress=gr.Progress(track_tqdm=True),
|
| 167 |
):
|
|
|
|
| 168 |
global pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
if pipe is None:
|
| 170 |
gr.Error("Pipeline not loaded. Cannot perform inference.")
|
| 171 |
+
return [[None, None], 0, None]
|
| 172 |
|
| 173 |
+
original_input_pil = input_image # Keep ref for slider
|
| 174 |
|
|
|
|
| 175 |
if input_image is None:
|
| 176 |
gr.Warning("Please provide an input image.")
|
| 177 |
+
return [[None, None], seed or 0, None]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
|
|
|
| 179 |
if randomize_seed:
|
| 180 |
+
seed = random.randint(0, MAX_SEED)
|
| 181 |
+
seed = int(seed)
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
# Ensure final_upscale_factor is an integer
|
| 184 |
final_upscale_factor = int(final_upscale_factor)
|
|
|
|
|
|
|
|
|
|
| 185 |
if final_upscale_factor > INTERNAL_PROCESSING_FACTOR:
|
| 186 |
+
gr.Warning(f"Selected upscale factor ({final_upscale_factor}x) is larger than internal processing factor ({INTERNAL_PROCESSING_FACTOR}x). "
|
| 187 |
+
f"Results might not be optimal. Clamping final factor to {INTERNAL_PROCESSING_FACTOR}x for this run.")
|
| 188 |
+
final_upscale_factor = INTERNAL_PROCESSING_FACTOR # Prevent upscaling *beyond* internal processing
|
| 189 |
|
| 190 |
logging.info(
|
| 191 |
+
f"Starting inference with seed: {seed}, "
|
| 192 |
+
f"Internal Processing Factor: {INTERNAL_PROCESSING_FACTOR}x, "
|
| 193 |
+
f"Final Output Factor: {final_upscale_factor}x, "
|
| 194 |
+
f"Steps: {num_inference_steps}, CNet Scale: {controlnet_conditioning_scale}"
|
| 195 |
)
|
| 196 |
|
|
|
|
| 197 |
try:
|
| 198 |
+
# process_input now implicitly uses INTERNAL_PROCESSING_FACTOR for budget checks
|
| 199 |
processed_input_image, w_original, h_original, was_input_resized = process_input(
|
| 200 |
input_image
|
| 201 |
)
|
| 202 |
except Exception as e:
|
| 203 |
logging.error(f"Error processing input image: {e}", exc_info=True)
|
| 204 |
gr.Error(f"Error processing input image: {e}")
|
| 205 |
+
return [[original_input_pil, None], seed, None]
|
| 206 |
|
|
|
|
| 207 |
w_proc, h_proc = processed_input_image.size
|
| 208 |
+
|
| 209 |
+
# Calculate control image dimensions using INTERNAL_PROCESSING_FACTOR
|
| 210 |
control_image_w = w_proc * INTERNAL_PROCESSING_FACTOR
|
| 211 |
control_image_h = h_proc * INTERNAL_PROCESSING_FACTOR
|
| 212 |
|
| 213 |
+
# Clamp control image size if it *still* exceeds budget (e.g., due to rounding or small inputs)
|
| 214 |
+
# This check should technically be redundant if process_input worked correctly, but good failsafe.
|
| 215 |
+
if control_image_w * control_image_h > MAX_PIXEL_BUDGET * 1.05: # Add a small margin
|
| 216 |
scale_factor = (MAX_PIXEL_BUDGET / (control_image_w * control_image_h)) ** 0.5
|
| 217 |
control_image_w = max(8, int(control_image_w * scale_factor))
|
| 218 |
control_image_h = max(8, int(control_image_h * scale_factor))
|
|
|
|
| 219 |
control_image_w = max(8, control_image_w - control_image_w % 8)
|
| 220 |
control_image_h = max(8, control_image_h - control_image_h % 8)
|
| 221 |
+
logging.warning(f"Control image dimensions clamped to {control_image_w}x{control_image_h} post-processing to fit budget.")
|
| 222 |
gr.Warning(f"Control image dimensions further clamped to {control_image_w}x{control_image_h}.")
|
| 223 |
|
| 224 |
+
logging.info(f"Resizing processed input {w_proc}x{h_proc} to control image {control_image_w}x{control_image_h} (using {INTERNAL_PROCESSING_FACTOR}x factor)")
|
|
|
|
| 225 |
try:
|
| 226 |
+
# Use the processed input image for control, resized to the intermediate size
|
| 227 |
control_image = processed_input_image.resize((control_image_w, control_image_h), Image.Resampling.LANCZOS)
|
| 228 |
except ValueError as resize_err:
|
| 229 |
logging.error(f"Error resizing processed input to control image: {resize_err}")
|
| 230 |
gr.Error(f"Failed to prepare control image: {resize_err}")
|
| 231 |
+
return [[original_input_pil, None], seed, None]
|
| 232 |
|
|
|
|
| 233 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 234 |
|
| 235 |
+
# --- Run the Pipeline at INTERNAL_PROCESSING_FACTOR scale ---
|
| 236 |
+
gr.Info(f"Generating intermediate image at {INTERNAL_PROCESSING_FACTOR}x quality ({control_image_w}x{control_image_h})...")
|
| 237 |
+
logging.info(f"Running pipeline with size: {control_image_w}x{control_image_h}")
|
| 238 |
+
intermediate_result_image = None
|
| 239 |
try:
|
| 240 |
with torch.inference_mode():
|
|
|
|
| 241 |
intermediate_result_image = pipe(
|
| 242 |
+
prompt="",
|
| 243 |
+
control_image=control_image, # Control image IS the intermediate size
|
| 244 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 245 |
+
num_inference_steps=int(num_inference_steps),
|
| 246 |
+
guidance_scale=0.0,
|
| 247 |
height=control_image_h, # Target height for the model
|
| 248 |
width=control_image_w, # Target width for the model
|
| 249 |
generator=generator,
|
|
|
|
|
|
|
| 250 |
).images[0]
|
| 251 |
logging.info(f"Pipeline execution finished. Intermediate image size: {intermediate_result_image.size if intermediate_result_image else 'None'}")
|
| 252 |
|
| 253 |
except torch.cuda.OutOfMemoryError as oom_error:
|
|
|
|
| 254 |
logging.error(f"CUDA Out of Memory during pipeline execution: {oom_error}", exc_info=True)
|
| 255 |
+
gr.Error(f"Ran out of GPU memory trying to generate intermediate {control_image_w}x{control_image_h}.")
|
| 256 |
+
if device == 'cuda': torch.cuda.empty_cache()
|
| 257 |
+
return [[original_input_pil, None], seed, None]
|
| 258 |
except Exception as e:
|
|
|
|
| 259 |
logging.error(f"Error during pipeline execution: {e}", exc_info=True)
|
| 260 |
+
gr.Error(f"Inference failed: {e}")
|
| 261 |
+
return [[original_input_pil, None], seed, None]
|
| 262 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
if not intermediate_result_image:
|
| 264 |
+
logging.error("Intermediate result image is None after pipeline execution.")
|
| 265 |
+
gr.Error("Inference produced no result image.")
|
| 266 |
+
return [[original_input_pil, None], seed, None]
|
|
|
|
| 267 |
|
| 268 |
+
# --- Final Resizing to User's Desired Scale ---
|
| 269 |
# Calculate final target dimensions based on ORIGINAL input size and FINAL upscale factor
|
| 270 |
+
# If input was resized, we scale the *processed* input size instead, as original is unknown
|
| 271 |
if was_input_resized:
|
| 272 |
# Base final size on the downscaled input that was processed
|
| 273 |
final_target_w = w_proc * final_upscale_factor
|
|
|
|
| 279 |
final_target_w = w_original * final_upscale_factor
|
| 280 |
final_target_h = h_original * final_upscale_factor
|
| 281 |
|
|
|
|
| 282 |
final_result_image = intermediate_result_image
|
| 283 |
current_w, current_h = intermediate_result_image.size
|
| 284 |
|
| 285 |
+
# Only resize if the intermediate size doesn't match the final desired size
|
| 286 |
if (current_w, current_h) != (final_target_w, final_target_h):
|
| 287 |
logging.info(f"Resizing intermediate image from {current_w}x{current_h} to final target size {final_target_w}x{final_target_h} (using {final_upscale_factor}x factor)")
|
| 288 |
gr.Info(f"Resizing from intermediate {current_w}x{current_h} to final {final_target_w}x{final_target_h}...")
|
| 289 |
+
|
| 290 |
try:
|
|
|
|
| 291 |
if final_target_w > 0 and final_target_h > 0:
|
| 292 |
+
# Use LANCZOS for downsampling, it's high quality
|
| 293 |
final_result_image = intermediate_result_image.resize((final_target_w, final_target_h), Image.Resampling.LANCZOS)
|
| 294 |
else:
|
|
|
|
| 295 |
gr.Warning(f"Invalid final target dimensions ({final_target_w}x{final_target_h}). Skipping final resize.")
|
| 296 |
final_result_image = intermediate_result_image # Keep intermediate
|
| 297 |
except Exception as resize_e:
|
|
|
|
| 298 |
logging.error(f"Could not resize intermediate image to final size: {resize_e}")
|
| 299 |
gr.Warning(f"Failed to resize to final {final_upscale_factor}x. Returning intermediate {INTERNAL_PROCESSING_FACTOR}x result ({current_w}x{current_h}).")
|
| 300 |
final_result_image = intermediate_result_image # Fallback to intermediate
|
| 301 |
else:
|
|
|
|
| 302 |
logging.info(f"Intermediate size {current_w}x{current_h} matches final target size. No final resize needed.")
|
| 303 |
|
| 304 |
+
|
| 305 |
logging.info(f"Inference successful. Final output size: {final_result_image.size}")
|
| 306 |
|
| 307 |
+
# --- Base64 Encoding (No change needed here) ---
|
| 308 |
base64_string = None
|
| 309 |
if final_result_image:
|
| 310 |
try:
|
| 311 |
buffered = io.BytesIO()
|
|
|
|
| 312 |
final_result_image.save(buffered, format="WEBP", quality=90)
|
| 313 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
| 314 |
base64_string = f"data:image/webp;base64,{img_str}"
|
| 315 |
logging.info(f"Encoded result image to Base64 string (length: {len(base64_string)} chars).")
|
| 316 |
except Exception as enc_err:
|
|
|
|
| 317 |
logging.error(f"Failed to encode result image to Base64: {enc_err}", exc_info=True)
|
|
|
|
| 318 |
|
| 319 |
+
# Return original input and the FINAL processed image
|
| 320 |
return [[original_input_pil, final_result_image], seed, base64_string]
|
| 321 |
|
| 322 |
|
| 323 |
+
# --- Gradio Interface (Minor Text Updates) ---
|
| 324 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Flux Upscaler Demo") as demo:
|
| 325 |
gr.Markdown(
|
| 326 |
f"""
|
|
|
|
| 328 |
Upscale images using the [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) model based on [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
|
| 329 |
Currently running on **{power_device}**. Hardware provided by Hugging Face 🤗.
|
| 330 |
|
| 331 |
+
**How it works:** This demo uses an internal processing scale of **{INTERNAL_PROCESSING_FACTOR}x** for potentially higher detail generation,
|
| 332 |
+
then resizes the result to your selected **Final Upscale Factor**. This aims for {INTERNAL_PROCESSING_FACTOR}x quality at your desired output resolution.
|
| 333 |
|
| 334 |
+
*Note*: Intermediate processing resolution is limited to approximately **{MAX_PIXEL_BUDGET/1_000_000:.1f} megapixels** ({int(MAX_PIXEL_BUDGET**0.5)}x{int(MAX_PIXEL_BUDGET**0.5)}) due to resource constraints.
|
| 335 |
+
The *diffusion process time* is mainly determined by this intermediate size, not the final output size.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
"""
|
| 337 |
)
|
| 338 |
|
|
|
|
| 345 |
sources=["upload", "clipboard"],
|
| 346 |
)
|
| 347 |
with gr.Column(scale=1):
|
| 348 |
+
# Renamed slider label for clarity
|
| 349 |
+
upscale_factor_slider = gr.Slider(label="Final Upscale Factor", info=f"Output size relative to input. Internal processing uses {INTERNAL_PROCESSING_FACTOR}x quality.", minimum=1, maximum=INTERNAL_PROCESSING_FACTOR, step=1, value=2) # Default to 2x, max is now INTERNAL_PROCESSING_FACTOR
|
| 350 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=4, maximum=50, step=1, value=15)
|
| 351 |
+
controlnet_conditioning_scale = gr.Slider(label="ControlNet Conditioning Scale", info="Strength of ControlNet guidance", minimum=0.0, maximum=1.5, step=0.05, value=0.6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
with gr.Row():
|
| 353 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
| 354 |
randomize_seed = gr.Checkbox(label="Random", value=True, scale=0, min_width=80)
|
|
|
|
| 358 |
result_slider = ImageSlider(
|
| 359 |
label="Input / Output Comparison",
|
| 360 |
type="pil",
|
| 361 |
+
interactive=False,
|
| 362 |
show_label=True,
|
| 363 |
+
position=0.5
|
| 364 |
)
|
| 365 |
|
| 366 |
output_seed = gr.Textbox(label="Seed Used", interactive=False, visible=True, scale=1)
|
|
|
|
| 367 |
api_base64_output = gr.Textbox(label="API Base64 Output", interactive=False, visible=False)
|
| 368 |
|
| 369 |
+
# --- Examples (Updated default factor if needed) ---
|
| 370 |
example_dir = "examples"
|
| 371 |
example_files = ["image_2.jpg", "image_4.jpg", "low_res_face.png", "low_res_landscape.png"]
|
| 372 |
example_paths = [os.path.join(example_dir, f) for f in example_files if os.path.exists(os.path.join(example_dir, f))]
|
| 373 |
|
| 374 |
if example_paths:
|
| 375 |
gr.Examples(
|
| 376 |
+
# Examples now use the new default of 2x for the final factor
|
| 377 |
+
examples=[ [path, 2, 15, 0.6, random.randint(0,MAX_SEED), True] for path in example_paths ],
|
| 378 |
+
# Ensure inputs match the order expected by `infer` now
|
| 379 |
inputs=[ input_im, upscale_factor_slider, num_inference_steps, controlnet_conditioning_scale, seed, randomize_seed, ],
|
| 380 |
+
outputs=[result_slider, output_seed], # Base64 output ignored by Examples
|
| 381 |
+
fn=infer,
|
| 382 |
+
cache_examples="lazy",
|
| 383 |
+
label="Example Images (Click to Run with 2x Output)",
|
|
|
|
| 384 |
run_on_click=True
|
| 385 |
)
|
| 386 |
else:
|
|
|
|
| 389 |
gr.Markdown("---")
|
| 390 |
gr.Markdown("**Disclaimer:** Demo for illustrative purposes. Users are responsible for generated content.")
|
| 391 |
|
| 392 |
+
# Connect button click
|
| 393 |
run_button.click(
|
| 394 |
fn=infer,
|
| 395 |
inputs=[
|
|
|
|
| 397 |
randomize_seed,
|
| 398 |
input_im,
|
| 399 |
num_inference_steps,
|
| 400 |
+
upscale_factor_slider, # Use the slider value here
|
| 401 |
controlnet_conditioning_scale,
|
| 402 |
],
|
|
|
|
| 403 |
outputs=[result_slider, output_seed, api_base64_output],
|
| 404 |
+
api_name="upscale"
|
| 405 |
)
|
| 406 |
|
| 407 |
# Launch the Gradio app
|
|
|
|
|
|
|
| 408 |
demo.queue(max_size=10).launch(share=False, show_api=True)
|